Napredna pretraga

Pregled bibliografske jedinice broj: 955166

Interactive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall


Žunić Išasegi, Iris; Radoš, Milan; Krsnik, Željka; Radoš, Marko; Benjak, Vesna; Kostović, Ivica
Interactive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall // Brain structure & function, 223 (2018), 8; 3919-3943 doi:10.1007/s00429-018-1721-2 (međunarodna recenzija, članak, znanstveni)


Naslov
Interactive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall

Autori
Žunić Išasegi, Iris ; Radoš, Milan ; Krsnik, Željka ; Radoš, Marko ; Benjak, Vesna ; Kostović, Ivica

Izvornik
Brain structure & function (1863-2653) 223 (2018), 8; 3919-3943

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Fetal brain ; Glia ; Proliferative and migratory neurons ; Sagittal axonal strata ; White matter integrity

Sažetak
Development of the cerebral wall is characterized by partially overlapping histogenetic events. However, little is known with regards to when, where, and how growing axonal pathways interact with progenitor cell lineages in the proliferative zones of the human fetal cerebrum. We analyzed the developmental continuity and spatial distribution of the axonal sagittal strata (SS) and their relationship with proliferative zones in a series of human brains (8-40 post- conceptional weeks ; PCW) by comparing histological, histochemical, and immunocytochemical data with magnetic resonance imaging (MRI). Between 8.5 and 11 PCW, thalamocortical fibers from the intermediate zone (IZ) were initially dispersed throughout the subventricular zone (SVZ), while sizeable axonal "invasion" occurred between 12.5 and 15 PCW followed by callosal fibers which "delaminated" the ventricular zone-inner SVZ from the outer SVZ (OSVZ). During midgestation, the SS extensively invaded the OSVZ, separating cell bands, and a new multilaminar axonal- cellular compartment (MACC) was formed. Preterm period reveals increased complexity of the MACC in terms of glial architecture and the thinning of proliferative bands. The addition of associative fibers and the formation of the centrum semiovale separated the SS from the subplate. In vivo MRI of the occipital SS indicates a "triplet" structure of alternating hypointense and hyperintense bands. Our results highlighted the developmental continuity of sagittally oriented "corridors" of projection, commissural and associative fibers, and histogenetic interaction with progenitors, neurons, and glia. Histogenetical changes in the MACC, and consequently, delineation of the SS on MRI, may serve as a relevant indicator of white matter microstructural integrity in the developing brain.

Izvorni jezik
Engleski

Znanstvena područja
Temeljne medicinske znanosti

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati