Napredna pretraga

Pregled bibliografske jedinice broj: 942003

Koopman-based model predictive control of a nanometric positioning system


Kamenar, Ervin; Korda, Milan; Zelenika, Saša; Mezić, Igor; Maćešić, Senka
Koopman-based model predictive control of a nanometric positioning system // Proceedings of the 18th EUSPEN International Conference / Billington, D. ; Leach, R. K. ; Phillips, D. ; Riemer, O. ; Savio, E. (ur.).
Cranfield, UK: EUSPEN, 2018. str. 75-76 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


Naslov
Koopman-based model predictive control of a nanometric positioning system

Autori
Kamenar, Ervin ; Korda, Milan ; Zelenika, Saša ; Mezić, Igor ; Maćešić, Senka

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 18th EUSPEN International Conference / Billington, D. ; Leach, R. K. ; Phillips, D. ; Riemer, O. ; Savio, E. - Cranfield, UK : EUSPEN, 2018, 75-76

ISBN
978-0-9957751-2-1

Skup
18th EUSPEN International Conference

Mjesto i datum
Venezia, Italija, 04.-08. 06. 2018

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Nonlinear disturbances ; nanometric positioning ; Koopman-based model predictive control ; modelling and validation

Sažetak
Nonlinear frictional disturbances limit the performances of high-precision mechatronics systems. Recently it was shown that nanometric positioning can be achieved only if these disturbances are identified, modelled and compensated for via suitable control approaches. A PID controller, complemented with feed-forward based on the Generalized Maxwell-slip model, allows hence to achieve nanometric positioning but its real-time implementation is difficult, whereas a self-tuning regulator enables nanometric positioning with a marked overshoot. Koopman-based model predictive control (MPC) is applied in this work instead. This approach allows “lifting” the nonlinear dynamics of the considered device into a higher dimensional space where its behaviour can be predicted by a linear system ; the computational complexity of the thus obtained controller is hence comparable to that of equivalent linear controllers. The resulting positioning performances are evaluated numerically in the MATLAB/Simulink environment and compared to those when the mechatronics device is driven by using different controllers. It is thus shown that the Koopman-based MPC virtually eliminates steady state errors, decreases the settling time and results in very small overshoots.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci