Napredna pretraga

Pregled bibliografske jedinice broj: 918460

Some applications and constructions of intertwining operators in Logarithmic Conformal Field Theory


Adamović, Dražen; Milas, Antun
Some applications and constructions of intertwining operators in Logarithmic Conformal Field Theory // Contemporary mathematics, 695 (2017), 15-27 (međunarodna recenzija, članak, znanstveni)


Naslov
Some applications and constructions of intertwining operators in Logarithmic Conformal Field Theory

Autori
Adamović, Dražen ; Milas, Antun

Izvornik
Contemporary mathematics (0271-4132) 695 (2017); 15-27

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Triplet vertex algebra ; singlet vertex algebras ; fusion rules ; intertwining operators

Sažetak
We discuss some applications of fusion rules and intertwining operators in the representation theory of orbifolds of triplet vertex algebras. We prove that the classification of irreducible modules for vertex algebra $W(p) ^{; ; A_m}; ; $ follows from (conjectural) fusion rules from singlet vertex algebra. In the case of $p=2$ we rigorously prove fusion rules formulas in the framework of vertex algebras and intertwining operators, so our result gives a classification of modules for $W(p)^{; ; A_m}; ; $ for $p=2$. We also present a new deformed realization of triplet and singlet vertex algebras which gives a construction of certain intertwining operators which cannot be detected using standard free field realization.

Izvorni jezik
Engleski

Znanstvena područja
Matematika

Napomena
ISBNs: 978-1-4704-2666-8 (print) ; 978-1-4704-4196-8 (online)



POVEZANOST RADA


Projekt / tema
HRZZ-IP-2013-11-2634 - Algebarske i kombinatorne metode u teoriji verteks algebri (Dražen Adamović, )

Ustanove
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb