Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 917582

Baroreflex Physiology Using Koopman Mode Analysis


Maćešić, Senka; Mezić, Igor; Fonoberova, Maria; Črnjarić-Žic, Nelida; Drmač, Zlatko; Andrejčuk, Aleksandar
Baroreflex Physiology Using Koopman Mode Analysis // SIAM Conference on Applications of Dynamical Systems (DS17)
Snowbird, SAD, 2017. str. 277-277 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 917582 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Baroreflex Physiology Using Koopman Mode Analysis
(Baroreflex Physiology Using Koopman Mode Anal- ysis)

Autori
Maćešić, Senka ; Mezić, Igor ; Fonoberova, Maria ; Črnjarić-Žic, Nelida ; Drmač, Zlatko ; Andrejčuk, Aleksandar

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Skup
SIAM Conference on Applications of Dynamical Systems (DS17)

Mjesto i datum
Snowbird, SAD, 21-25.5.2017

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Koopman operator, baroreflex physiology, non-autonomous systems

Sažetak
We propose new methods for the evaluation of eigenvalues λ(t, t0)of the Koopman operator family K(t, t0), t>t0 of the non-autonomous dynamic systems. The first step in the development is a new data-driven method for very accurate evaluation of eigenvalues λ(t, t0), t>t0 in the hybrid linear non-autonomous case. Then, the approach is extended to continuous linear non-autonomous systems and non-autonomous systems in general. We also propose a relationship between eigenvalues λ(t, t0), t>t0 and eigenvalues computed by Arnoldi-like methods on large sets of snapshots. We apply the new approach to baroreflex physiology, i.e. to the resonant breathing which is used in PTSD treatment. For the resonant breathing we have both data and parameterized mathematical model. The model incorporates a delay and thus is infinite dimensional, hybrid, with a stochastic input. Its asymptotic dynamics is close to quasi-periodic. The applied new methods give an improved insight to the eigenvalues of the related Koopman operator family K(t, t0).

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Tehnički fakultet, Rijeka,
Prirodoslovno-matematički fakultet, Zagreb

Citiraj ovu publikaciju

Maćešić, Senka; Mezić, Igor; Fonoberova, Maria; Črnjarić-Žic, Nelida; Drmač, Zlatko; Andrejčuk, Aleksandar
Baroreflex Physiology Using Koopman Mode Analysis // SIAM Conference on Applications of Dynamical Systems (DS17)
Snowbird, SAD, 2017. str. 277-277 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Maćešić, S., Mezić, I., Fonoberova, M., Črnjarić-Žic, N., Drmač, Z. & Andrejčuk, A. (2017) Baroreflex Physiology Using Koopman Mode Analysis. U: SIAM Conference on Applications of Dynamical Systems (DS17).
@article{article, year = {2017}, pages = {277-277}, keywords = {Koopman operator, baroreflex physiology, non-autonomous systems}, title = {Baroreflex Physiology Using Koopman Mode Anal- ysis}, keyword = {Koopman operator, baroreflex physiology, non-autonomous systems}, publisherplace = {Snowbird, SAD} }




Contrast
Increase Font
Decrease Font
Dyslexic Font