Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 915184

Unsupervised Learning of Sequencing Read Types


Tomljanović, Jan; Šebrek, Tomislav; Šikić, Mile
Unsupervised Learning of Sequencing Read Types // Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics
Newark, SAD, 2017. str. 12-17 doi:10.1145/3155077.3155080 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 915184 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Unsupervised Learning of Sequencing Read Types

Autori
Tomljanović, Jan ; Šebrek, Tomislav ; Šikić, Mile

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics / - , 2017, 12-17

ISBN
978-1-4503-5322-9

Skup
ICCBB 2017

Mjesto i datum
Newark, SAD, 18 - 20.10.2017

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Deep-learning ; unsupervised learning ; De novo assembly ; Chimeric read ; Repeat read.

Sažetak
In this work, we present a novel method for improvement of de novo genome assembly which is based on detection of chimeric and repeat reads. Using this information, we can facilitate the detection of unique sequences which results in more contiguous final sequences. We showed that read types can be separated by transforming a coverage graph for each read into 1D signal. We found that signals for repeat and chimeric reads differ significantly from signals for regular reads. Because manual determination of correct read types is a tedious and time-consuming job, we chose unsupervised learning. For feature extraction, we applied and compared variational and denoising autoencoders. Clustering was performed by K-means algorithm. We tested the method on four bacterial genomes sequenced by Pacific Biosciences devices. The achieved results show that using labelled read types can significant improve the contiguity of the assembled final sequence.

Izvorni jezik
Engleski

Znanstvena područja
Biologija, Računarstvo



POVEZANOST RADA


Ustanove
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mile Šikić (autor)

Citiraj ovu publikaciju

Tomljanović, Jan; Šebrek, Tomislav; Šikić, Mile
Unsupervised Learning of Sequencing Read Types // Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics
Newark, SAD, 2017. str. 12-17 doi:10.1145/3155077.3155080 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Tomljanović, J., Šebrek, T. & Šikić, M. (2017) Unsupervised Learning of Sequencing Read Types. U: Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics doi:10.1145/3155077.3155080.
@article{article, year = {2017}, pages = {12-17}, DOI = {10.1145/3155077.3155080}, keywords = {Deep-learning, unsupervised learning, De novo assembly, Chimeric read, Repeat read.}, doi = {10.1145/3155077.3155080}, isbn = {978-1-4503-5322-9}, title = {Unsupervised Learning of Sequencing Read Types}, keyword = {Deep-learning, unsupervised learning, De novo assembly, Chimeric read, Repeat read.}, publisherplace = {Newark, SAD} }

Citati