Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 909801

Evaluation of fusion approaches in large-scale bio-annotation setting


Vidulin, Vedrana; Brbić, Maria; Supek, Fran; Šmuc, Tomislav
Evaluation of fusion approaches in large-scale bio-annotation setting // Proceedings of the 4th Workshop on Machine Learning in Life Sciences / Ksieniewicz, Pawel (ur.).
Wroclaw: European Research Centre of Network Intelligence for Innovation Enhancement, 2016. str. 37-51 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 909801 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Evaluation of fusion approaches in large-scale bio-annotation setting

Autori
Vidulin, Vedrana ; Brbić, Maria ; Supek, Fran ; Šmuc, Tomislav

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 4th Workshop on Machine Learning in Life Sciences / Ksieniewicz, Pawel - Wroclaw : European Research Centre of Network Intelligence for Innovation Enhancement, 2016, 37-51

ISBN
978-83-943803-1-1

Skup
4th Workshop on Machine Learning in Life Science

Mjesto i datum
Riva del Garda, Italija, 23.09.2016

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Information fusion ; Ensemble classifier design ; Diversity ; Genomics

Sažetak
In this work we compare different information fusion approaches in the context of large-scale multi-label classification problems, typical today in bio-domains: early fusion, late fusion and hybrid fusion approach. The experiments are performed on two novel large-scale classification datasets for gene function prediction and prokaryotic phenotype prediction. Both datasets are based on descriptors coming from a number of different representations of biological entities. The results reveal that the fusion approaches exploiting complementarity are best suited for difficult annotation problems featured in complex datasets from bio-domains for which individual classifiers perform well only locally.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Vedrana Vidulin (autor)

Avatar Url Fran Supek (autor)

Avatar Url Maria Brbić (autor)

Avatar Url Tomislav Šmuc (autor)

Citiraj ovu publikaciju:

Vidulin, Vedrana; Brbić, Maria; Supek, Fran; Šmuc, Tomislav
Evaluation of fusion approaches in large-scale bio-annotation setting // Proceedings of the 4th Workshop on Machine Learning in Life Sciences / Ksieniewicz, Pawel (ur.).
Wroclaw: European Research Centre of Network Intelligence for Innovation Enhancement, 2016. str. 37-51 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Vidulin, V., Brbić, M., Supek, F. & Šmuc, T. (2016) Evaluation of fusion approaches in large-scale bio-annotation setting. U: Ksieniewicz, P. (ur.)Proceedings of the 4th Workshop on Machine Learning in Life Sciences.
@article{article, author = {Vidulin, Vedrana and Brbi\'{c}, Maria and Supek, Fran and \v{S}muc, Tomislav}, editor = {Ksieniewicz, P.}, year = {2016}, pages = {37-51}, keywords = {Information fusion, Ensemble classifier design, Diversity, Genomics}, isbn = {978-83-943803-1-1}, title = {Evaluation of fusion approaches in large-scale bio-annotation setting}, keyword = {Information fusion, Ensemble classifier design, Diversity, Genomics}, publisher = {European Research Centre of Network Intelligence for Innovation Enhancement}, publisherplace = {Riva del Garda, Italija} }
@article{article, author = {Vidulin, Vedrana and Brbi\'{c}, Maria and Supek, Fran and \v{S}muc, Tomislav}, editor = {Ksieniewicz, P.}, year = {2016}, pages = {37-51}, keywords = {Information fusion, Ensemble classifier design, Diversity, Genomics}, isbn = {978-83-943803-1-1}, title = {Evaluation of fusion approaches in large-scale bio-annotation setting}, keyword = {Information fusion, Ensemble classifier design, Diversity, Genomics}, publisher = {European Research Centre of Network Intelligence for Innovation Enhancement}, publisherplace = {Riva del Garda, Italija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font