Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Comparison of the Force Exerted by Hippocampal and DRG Growth Cones (CROSBI ID 244106)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Amin, Ladan ; Ercolini, Erika ; Ban, Jelena ; Torre, Vincent Comparison of the Force Exerted by Hippocampal and DRG Growth Cones // PLoS One, 8 (2013), 8; e73025, 10. doi: 10.1371/journal.pone.0073025

Podaci o odgovornosti

Amin, Ladan ; Ercolini, Erika ; Ban, Jelena ; Torre, Vincent

engleski

Comparison of the Force Exerted by Hippocampal and DRG Growth Cones

Mechanical properties such as force generation are fundamental for neuronal motility, development and regeneration. We used optical tweezers to compare the force exerted by growth cones (GCs) of neurons from the Peripheral Nervous System (PNS), such as Dorsal Root Ganglia (DRG) neurons, and from the Central Nervous System (CNS) such as hippocampal neurons. Developing GCs from dissociated DRG and hippocampal neurons were obtained from P1- P2 and P10-P12 rats. Comparing their morphology, we observed that the area of GCs of hippocampal neurons was 8-10 µm2 and did not vary between P1- P2 and P10-P12 rats, but GCs of DRG neurons were larger and their area increased from P1-P2 to P10- P12 by 2-4 times. The force exerted by DRG filopodia was in the order of 1-2 pN and never exceeded 5 pN, while hippocampal filopodia exerted a larger force, often in the order of 5 pN. Hippocampal and DRG lamellipodia exerted lateral forces up to 20 pN, but lamellipodia of DRG neurons could exert a vertical force larger than that of hippocampal neurons. Force-velocity relationships (Fv) in both types of neurons had the same qualitative behaviour, consistent with a common autocatalytic model of force generation. These results indicate that molecular mechanisms of force generation of GC from CNS and PNS neurons are similar but the amplitude of generated force is influenced by their cytoskeletal properties.

neuronal growth cones ; optical tweezwers ; neuronal motility

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

8 (8)

2013.

e73025

10

objavljeno

1932-6203

10.1371/journal.pone.0073025

Povezanost rada

Biologija, Biotehnologija u biomedicini (prirodno područje, biomedicina i zdravstvo, biotehničko područje), Interdisciplinarne biotehničke znanosti, Interdisciplinarne prirodne znanosti

Poveznice
Indeksiranost