Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

The Metal effect on self-assembling of oxalamide gelators explored by mass spectrometry and DFT calculations (CROSBI ID 243002)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Dabić, Dario ; Brkljačić, Lidija ; Tandarić, Tana ; Žinić, Mladen ; Vianello, Robert ; Frkanec, Leo ; Kobetić, Renata The Metal effect on self-assembling of oxalamide gelators explored by mass spectrometry and DFT calculations // Journal of the American Society for Mass Spectrometry, 28 (2018), 1; 103-113. doi: 10.1007/s13361-017-1834-5

Podaci o odgovornosti

Dabić, Dario ; Brkljačić, Lidija ; Tandarić, Tana ; Žinić, Mladen ; Vianello, Robert ; Frkanec, Leo ; Kobetić, Renata

engleski

The Metal effect on self-assembling of oxalamide gelators explored by mass spectrometry and DFT calculations

Gels formed by self-assembly of small organic molecules are of wide interest as dynamic soft materials with numerous possible applications, especially in terms of nanotechnology for functional responsive biomaterials, biosensors, and nanowires. Four bis-oxalamides were chosen to show if electrospray ionization mass spectrometry (ESI-MS) could be used as a prediction of a good gelator and also to shed light on the gelation processes. By inspecting the gelation of several solvent, we showed that bis(amino acid)oxalamide 1 proved to be the most efficient, also being able of forming the largest observable assemblies in the gas phase. The formation of single charged assemblies holding from one up to six monomer units is the outcome of the strong intermolecular H-bonds, particularly among terminal carboxyl groups. The variation of solvents from polar aprotic towards polar protic did not have any significant effects on the size of the assemblies. The addition of a salt such as NaOAc or Mg(OAc)2, depending on the concentration, altered the assembling. Computational analysis at the DFT level aided in the interpretation of the observed trends and revealed that individual gelator molecules spontaneously assemble to higher aggregates, but the presence of the Na+ cation disrupts any gelator organization since it becomes significantly more favorable for gelator molecules to bind Na+ cations up to the 3:1 ratio than to self-assemble, being fully in line with experimental observations reported here.

oxalamide gelators ; self-assembly ; ESI–MS ; DFT

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

28 (1)

2018.

103-113

objavljeno

1044-0305

1879-1123

10.1007/s13361-017-1834-5

Povezanost rada

Kemija

Poveznice
Indeksiranost