Pregled bibliografske jedinice broj: 890528
Cooperative Cloud SLAM on Matrix Lie Groups
Cooperative Cloud SLAM on Matrix Lie Groups // Iberian Robotics Conference (ROBOT)
Seville, Spain, 2017. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 890528 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Cooperative Cloud SLAM on Matrix Lie Groups
Autori
Lenac, Kruno ; Ćesić, Josip ; Marković, Ivan ; Petrović, Ivan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Iberian Robotics Conference (ROBOT)
/ - Seville, Spain, 2017
Skup
Iberian Robotics Conference (ROBOT)
Mjesto i datum
Sevilla, Španjolska, 22.11.2017. - 24.11.2017
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
cooperative SLAM ; cloud SLAM ; exactly sparse delayed state filter ; Lie groups ; planar map
Sažetak
In this paper we present a Cooperative Cloud SLAM on Matrix Lie Groups (C2LEARS), which enables efficient and accurate execution of simultaneous localization and environment mapping, while relying on integration of data from multiple agents. Such fused information is then used to increase mapping accuracy of every agent itself. In particular, the agents perform only computationally simpler tasks including local map building and single trajectory optimization. At the same time, the efficient execution is ensured by performing complex tasks of global map building and multiple trajectory optimization on a standalone cloud server. The front-end part of C2LEARS is based on a planar SLAM solution, while the back-end is implemented using the exactly sparse delayed state filter on matrix Lie groups (LG-ESDSF). The main advantages of the front-end employing planar surfaces to represent the environment are significantly lower memory requirements and possibility of the efficient map exchange between agents. The back-end relying on the LG-ESDSF allows for efficient trajectory optimization utilizing sparsity of the information form and exploiting higher accuracy supported by representing the state on Lie groups. We demonstrate C2LEARS on a real-world experiment recorded on the ground floor of our faculty building.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb