Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

Steady RANS simulation of the homogeneous neutrally stratified atmospheric boundary layer (CROSBI ID 650239)

Prilog sa skupa u zborniku | sažetak izlaganja sa skupa | međunarodna recenzija

Cindori, Mihael ; Juretić, Franjo ; Kozmar, Hrvoje ; Džijan, Ivo Steady RANS simulation of the homogeneous neutrally stratified atmospheric boundary layer // Proceedings of the 7th European-African Conference on Wind Engineering (EACWE 2017). 2017

Podaci o odgovornosti

Cindori, Mihael ; Juretić, Franjo ; Kozmar, Hrvoje ; Džijan, Ivo

engleski

Steady RANS simulation of the homogeneous neutrally stratified atmospheric boundary layer

An accurate computational simulation of the atmospheric boundary layer (ABL) is a major prerequisite when computationally studying wind effects on tall structures, dispersion and dilution of air pollutants in the lower atmosphere, wind energy yield, urban micrometeorology, etc. These investigations are commonly carried out using steady Reynolds- averaged-Navier-Stokes (RANS) equations, where there is an issue with maintaining the appropriate flow and turbulence conditions along the computational domain. Hence, a novel steady-RANS approach for computational modelling of the homogeneous ABL is developed. The method implements an additional wind source term in the momentum equation, calibrated from the measured data, that ensures homogeneous flow properties throughout the domain. The approach is validated using the standard k-ε turbulence model in comparison with the ABL wind-tunnel simulations for rural, suburban and urban terrains. This novel computational approach proves to be suitable for future wind engineering applications. In particular, the appropriate mean velocity, Reynolds shear stress and turbulent kinetic energy profiles are obtained. They are homogeneous along the computational domain, as the average discrepancy in the longitudinal direction is 0.1 % for the mean velocity profile, 0.6 % for the Reynolds shear stress profile, 0.3 % for the turbulent kinetic energy profile. The computational results agree very well with the ABL wind-tunnel simulations, as the average discrepancy between the experimental and computational results is 4.5 % for the mean velocity profile, 2.5 % for the Reynolds shear stress profile, 6 % for the turbulent kinetic energy profile. Future work would need to further validate this approach for the cases with engineering structures placed in the computational domain.

Homogeni atmosferski granični sloj ; neutralna termalna stratifikacija ; ravni teren ; kockasti model zgrade ; standardni k-epsilon model turbulencije

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o prilogu

2017.

objavljeno

Podaci o matičnoj publikaciji

Proceedings of the 7th European-African Conference on Wind Engineering (EACWE 2017)

Podaci o skupu

7th European-African Conference on Wind Engineering (EACWE 2017)

predavanje

04.07.2017-07.07.2017

Liège, Belgija

Povezanost rada

Fizika, Strojarstvo