Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 873941

Hilbert Transform Based Paroxysmal Tachycardia Detection Algorithm


Čuljak, Ivana; Cifrek, Mario
Hilbert Transform Based Paroxysmal Tachycardia Detection Algorithm // Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2017 40th International Convention on / Biljanović, Petar (ur.).
Opatija, Hrvatska: IEEE, 2017. str. 324-329 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)


CROSBI ID: 873941 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Hilbert Transform Based Paroxysmal Tachycardia Detection Algorithm

Autori
Čuljak, Ivana ; Cifrek, Mario

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), ostalo

Izvornik
Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2017 40th International Convention on / Biljanović, Petar - : IEEE, 2017, 324-329

ISBN
978-953-233-090-8

Skup
MIPRO 2017

Mjesto i datum
Opatija, Hrvatska, 22.-26. 5. 2017

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Paroxysmal tachycardia, ECG, QRS complex, Hilbert transform, MATLAB, Pan-Tompkins algorithm

Sažetak
Paroxysmal tachycardia (supraventricular and ventricular) is an episodic condition with an abrupt onset and termination followed by a rapid heart rate, usually between 140 and 250 beats per minute. Paroxysmal tachycardia can be discovered by detecting a QRS complex in ECG signals. Supraventricular tachycardia is characterized by a narrow QRS complex, and on the other side, ventricular tachycardia is characterized by a broad QRS complex. Detecting paroxysmal tachycardia can prevent pathogenesis of a heart disease. Implementation of an algorithm for QRS detection based on properties of the Hilbert transform is proposed in this paper. The results of the algorithm were compared with the Pan-Tompkins algorithm and the detection efficiency of the implemented algorithm on the used signals was 97.5 %. Both algorithms were tested using the recordings from the MIT-BIH Arrhythmia database.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivana Čuljak (autor)


Citiraj ovu publikaciju

Čuljak, Ivana; Cifrek, Mario
Hilbert Transform Based Paroxysmal Tachycardia Detection Algorithm // Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2017 40th International Convention on / Biljanović, Petar (ur.).
Opatija, Hrvatska: IEEE, 2017. str. 324-329 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)
Čuljak, I. & Cifrek, M. (2017) Hilbert Transform Based Paroxysmal Tachycardia Detection Algorithm. U: Biljanović, P. (ur.)Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2017 40th International Convention on.
@article{article, editor = {Biljanovi\'{c}, P.}, year = {2017}, pages = {324-329}, keywords = {Paroxysmal tachycardia, ECG, QRS complex, Hilbert transform, MATLAB, Pan-Tompkins algorithm}, isbn = {978-953-233-090-8}, title = {Hilbert Transform Based Paroxysmal Tachycardia Detection Algorithm}, keyword = {Paroxysmal tachycardia, ECG, QRS complex, Hilbert transform, MATLAB, Pan-Tompkins algorithm}, publisher = {IEEE}, publisherplace = {Opatija, Hrvatska} }
@article{article, editor = {Biljanovi\'{c}, P.}, year = {2017}, pages = {324-329}, keywords = {Paroxysmal tachycardia, ECG, QRS complex, Hilbert transform, MATLAB, Pan-Tompkins algorithm}, isbn = {978-953-233-090-8}, title = {Hilbert Transform Based Paroxysmal Tachycardia Detection Algorithm}, keyword = {Paroxysmal tachycardia, ECG, QRS complex, Hilbert transform, MATLAB, Pan-Tompkins algorithm}, publisher = {IEEE}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font