Napredna pretraga

Pregled bibliografske jedinice broj: 870796

Objective fixed-pole approach in geometrically exact 3D beams: implementational aspects


Gaćeša, Maja; Jelenić, Gordan
Objective fixed-pole approach in geometrically exact 3D beams: implementational aspects // Proceedings of the 25th UKACM Conference on Computational Mechanics / Faramarzi, Asaad ; Dirar, Samir (ur.).
Birmingham, Ujedinjeno Kraljevstvo: University of Birmingham, 2017. str. 224-227 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


Naslov
Objective fixed-pole approach in geometrically exact 3D beams: implementational aspects

Autori
Gaćeša, Maja ; Jelenić, Gordan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 25th UKACM Conference on Computational Mechanics / Faramarzi, Asaad ; Dirar, Samir - Birmingham, Ujedinjeno Kraljevstvo : University of Birmingham, 2017, 224-227

Skup
25th UKACM Conference on Computational Mechanics

Mjesto i datum
Birmingham, Ujedinjeno Kraljevstvo Velike Britanije i Irske, 11-13.04.2017

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
3D beams ; objectivity of strain measures ; fixed-pole approach ; numerical stability

Sažetak
The 6D representation of the configuration tensor was used to develop a geometrically non- linear beam finite element of an arbitrary order with Lagrangian (additive) interpolation of the configurational parameters. Analogously to the 3D case, where additive interpolation of the rotational parameters results in non- objective formulation, as shown by Crisfield and Jelenić, the proposed elements exhibit even worse non-objective behaviour, evident even in planar cases! A remedy for this problem was to develop and implement the so-called generalised shape functions (given by Jelenić and Crisfield for a 3D case) for the configurational parameter (which is a 6D vector). This successfully solved the problem of objectivity, but decreased formulation robustness significantly. We assume that the cause of this are not the shape functions themselves, but the significant numerical instability of the transformational matrices they contain. In this paper we pinpoint the terms in those matrices which we assume to be responsible for loss of robustness and analyse them with respect to computational precision and propose a remedy.

Izvorni jezik
Engleski

Znanstvena područja
Temeljne tehničke znanosti



POVEZANOST RADA


Projekt / tema
HRZZ-IP-2013-11-1631 - Aproksimacija ovisna o konfiguraciji u nelinearnoj analizi konstrukcija metodom konačnih elemenata (Gordan Jelenić, )

Ustanove
Građevinski fakultet, Rijeka