Napredna pretraga

Pregled bibliografske jedinice broj: 857007

Numerical Solution of Poisson’s Equation in an Arbitrary Domain by Using Meshless R-Function Method


Kozulić, Vedrana; Gotovac, Blaž
Numerical Solution of Poisson’s Equation in an Arbitrary Domain by Using Meshless R-Function Method // Proceedings of the 27th DAAAM International Symposium on Intelligent Manufacturing and Automation / Katalinic, B. (ur.).
Vienna: DAAAM International, 2016. str. 245-254 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


Naslov
Numerical Solution of Poisson’s Equation in an Arbitrary Domain by Using Meshless R-Function Method

Autori
Kozulić, Vedrana ; Gotovac, Blaž

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 27th DAAAM International Symposium on Intelligent Manufacturing and Automation / Katalinic, B. - Vienna : DAAAM International, 2016, 245-254

ISBN
978-3-902734-08-2

Skup
27th DAAAM International Symposium on Intelligent Manufacturing and Automation

Mjesto i datum
Mostar, Bosna i Hercegovina, 26-29.10.2016

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Meshless method ; solution structure ; collocation ; boundary conditions ; atomic basis functions

Sažetak
This paper describes a numerical procedure that uses solution structure method, atomic basis functions and a collocation technique. Solution structure method is based on the theory of R- functions. The solution of a boundary value problem is expressed in the form of formulae called solution structure which depends on three components: the first component describes the geometry of the domain exactly in analytical form, the second describes all boundary conditions exactly, while the third component is called differential component because it contains information about governing equation. Unknown differential component of the solution structure is represented by a linear combination of basis functions. Here, we propose to use atomic basis functions because of their good approximation properties. To determine the coefficients of linear combination in the solution structure, a collocation technique is used. Combination of atomic basis functions and solution structure method gives the meshfree method that can be applied for solving boundary value problems in domains of arbitrarily complex geometry with complex boundary conditions. This paper summarizes the main principles of the proposed method and presents its application to solution of the torsion problem.

Izvorni jezik
Engleski

Znanstvena područja
Građevinarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Ustanove
Fakultet građevinarstva, arhitekture i geodezije, Split

Časopis indeksira:


  • Scopus