Napredna pretraga

Pregled bibliografske jedinice broj: 85085

LABAQM - A System for Qualitative Modelling and Analysis of Animal Behaviour


Matetić, Maja; Ribarić, Slobodan; Ipšić, Ivo
LABAQM - A System for Qualitative Modelling and Analysis of Animal Behaviour // Proceedings of the 13th International Conference on Information and Intelligent Systems, IIS 2002
Varaždin, 2002. str. 267-278 (predavanje, domaća recenzija, cjeloviti rad (in extenso), znanstveni)


Naslov
LABAQM - A System for Qualitative Modelling and Analysis of Animal Behaviour

Autori
Matetić, Maja ; Ribarić, Slobodan ; Ipšić, Ivo

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 13th International Conference on Information and Intelligent Systems, IIS 2002 / - Varaždin, 2002, 267-278

Skup
13th International Conference on Information and Intelligent Systems, IIS 2002

Mjesto i datum
Varaždin, Hrvatska, 25-27.09.2002

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Domaća recenzija

Ključne riječi
Dynamic vision system ; qualitative modelling ; conceptual clustering ; hidden Markov models of characteristic behaviours.

Sažetak
Tracking of a laboratory animal and its behaviour interpretation based on frame sequence analysis have been traditionally quantitative and typically generates large amounts of temporally evolving data. In our work we are dealing with higher-level approaches such as conceptual clustering and qualitative modelling in order to represent data obtained by tracking. We present the LABAQM system developed for the analysis of laboratory animal behaviours. It is based on qualitative modelling of animal motions. We are dealing with the cognitive phase of the laboratory animal behaviour analysis as a part of the pharmacological experiments. The system is based on the quantitative data from the tracking application and incomplete domain background knowledge. The LABAQM system operates in two main phases: behaviour learning and behaviour analysis. The behaviour learning and behaviour analysis phase are based on symbol sequences, obtained by the transformation of the quantitative data. Behaviour learning phase includes supervised learning procedure, unsupervised learning procedure and their combination. The fusion of supervised and unsupervised learning procedures produces more robust models of characteristic behaviours, which are used in the behaviour analysis phase.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekt / tema
009033

Ustanove
Filozofski fakultet, Rijeka,
Fakultet elektrotehnike i računarstva, Zagreb

Citiraj ovu publikaciju

Matetić, Maja; Ribarić, Slobodan; Ipšić, Ivo
LABAQM - A System for Qualitative Modelling and Analysis of Animal Behaviour // Proceedings of the 13th International Conference on Information and Intelligent Systems, IIS 2002
Varaždin, 2002. str. 267-278 (predavanje, domaća recenzija, cjeloviti rad (in extenso), znanstveni)
Matetić, M., Ribarić, S. & Ipšić, I. (2002) LABAQM - A System for Qualitative Modelling and Analysis of Animal Behaviour. U: Proceedings of the 13th International Conference on Information and Intelligent Systems, IIS 2002.
@article{article, year = {2002}, pages = {267-278}, keywords = {dynamic vision system, qualitative modelling, conceptual clustering, hidden Markov models of characteristic behaviours.}, title = {LABAQM - A System for Qualitative Modelling and Analysis of Animal Behaviour}, keyword = {dynamic vision system, qualitative modelling, conceptual clustering, hidden Markov models of characteristic behaviours.}, publisherplace = {Vara\v{z}din, Hrvatska} }