Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 847626

Relative fractal drums, complex dimensions and geometric oscillations


Lapidus, Michel L.; Radunović, Goran; Žubrinić, Darko
Relative fractal drums, complex dimensions and geometric oscillations // The Second Workshop Dynamical Systems and Applications: Book of Abstracts
Maribor, 2016. str. 11-11 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 847626 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Relative fractal drums, complex dimensions and geometric oscillations

Autori
Lapidus, Michel L. ; Radunović, Goran ; Žubrinić, Darko

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
The Second Workshop Dynamical Systems and Applications: Book of Abstracts / - Maribor, 2016, 11-11

Skup
The Second Workshop Dynamical Systems and Applications

Mjesto i datum
Maribor, Slovenija, 08-09.06.2016

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Mellin transform; complex dimensions of a relative fractal drum; relative fractal drum; fractal set; box dimension; fractal zeta function; distance zeta function; tube zeta function; fractal string; Minkowski content; Minkowski measurable set; fractal tube formula; residue; meromorphic extension

Sažetak
We give an overview of the higher-dimensional theory of complex dimensions for relative fractal drums. Relative fractal drums or, in short, RFDs are a far reaching and convenient generalization of compact sets in Euclidean spaces. For such objects we associate a fractal zeta function which we call the distance (or Lapidus) zeta function. The corresponding complex dimensions of the RFD are then defined as the poles (or more general singularities) of the associated distance zeta function. These complex dimensions generalize the classical Minkowski dimension and are connected to the intrinsic geometric oscillations of the RFD. Possible application of the theory could be found in fractal analysis of bifurcations of dynamical systems. This is a joint work with Michel L. Lapidus and Darko Zubrinic.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
IP-2014-09-2285 - Geometrijska, ergodička i topološk a analiza nisko-dimenzionalnih dinamičkih sustava (GETDYN) (Slijepčević, Siniša, HRZZ - 2014-09 )

Ustanove
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Darko Žubrinić (autor)

Avatar Url Goran Radunović (autor)

Citiraj ovu publikaciju

Lapidus, Michel L.; Radunović, Goran; Žubrinić, Darko
Relative fractal drums, complex dimensions and geometric oscillations // The Second Workshop Dynamical Systems and Applications: Book of Abstracts
Maribor, 2016. str. 11-11 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)
Lapidus, M., Radunović, G. & Žubrinić, D. (2016) Relative fractal drums, complex dimensions and geometric oscillations. U: The Second Workshop Dynamical Systems and Applications: Book of Abstracts.
@article{article, year = {2016}, pages = {11-11}, keywords = {Mellin transform, complex dimensions of a relative fractal drum, relative fractal drum, fractal set, box dimension, fractal zeta function, distance zeta function, tube zeta function, fractal string, Minkowski content, Minkowski measurable set, fractal tube formula, residue, meromorphic extension}, title = {Relative fractal drums, complex dimensions and geometric oscillations}, keyword = {Mellin transform, complex dimensions of a relative fractal drum, relative fractal drum, fractal set, box dimension, fractal zeta function, distance zeta function, tube zeta function, fractal string, Minkowski content, Minkowski measurable set, fractal tube formula, residue, meromorphic extension}, publisherplace = {Maribor, Slovenija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font