Napredna pretraga

Pregled bibliografske jedinice broj: 830589

Durbin-Watson partial least-squares regression applied to MIR data on adulteration with edible oils of different origins


Jović, Ozren
Durbin-Watson partial least-squares regression applied to MIR data on adulteration with edible oils of different origins // Food chemistry, 213 (2016), 791-798 doi:10.1016/j.foodchem.2016.07.016 (međunarodna recenzija, članak, znanstveni)


Naslov
Durbin-Watson partial least-squares regression applied to MIR data on adulteration with edible oils of different origins

Autori
Jović, Ozren

Izvornik
Food chemistry (0308-8146) 213 (2016); 791-798

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
PLS ; MIR ; Durbin-Watson statistic ; Variable selection ; Binary mixtures ; Oil adulteration

Sažetak
A novel method for quantitative prediction and variable-selection on spectroscopic data, called Durbin-Watson partial least-squares regression (dwPLS), is proposed in this paper. The idea is to inspect serial correlation in infrared data that is known to consist of highly correlated neighbouring variables. The method selects only those variables whose intervals have a lower Durbin-Watson statistic (dw) than a certain optimal cutoff. For each interval, dw is calculated on a vector of regression coefficients. Adulteration of cold-pressed linseed oil (L), a well-known nutrient beneficial to health, is studied in this work by its being mixed with cheaper oils: rapeseed oil (R), sesame oil (Se) and sunflower oil (Su). The samples for each botanical origin of oil vary with respect to producer, content and geographic origin. The results obtained indicate that MIR-ATR, combined with dwPLS could be implemented to quantitative determination of edible-oil adulteration.

Izvorni jezik
Engleski

Znanstvena područja
Kemija



POVEZANOST RADA


Projekt / tema
119-1191342-2959 - Spektroskopska analiza nezasićenih sustava i spojeva metala (Snežana Miljanić, )

Ustanove
Prirodoslovno-matematički fakultet, Zagreb

Autor s matičnim brojem:
Ozren Jović, (307650)

Citiraj ovu publikaciju

Jović, Ozren
Durbin-Watson partial least-squares regression applied to MIR data on adulteration with edible oils of different origins // Food chemistry, 213 (2016), 791-798 doi:10.1016/j.foodchem.2016.07.016 (međunarodna recenzija, članak, znanstveni)
Jović, O. (2016) Durbin-Watson partial least-squares regression applied to MIR data on adulteration with edible oils of different origins. Food chemistry, 213, 791-798 doi:10.1016/j.foodchem.2016.07.016.
@article{article, author = {Jovi\'{c}, O.}, year = {2016}, pages = {791-798}, DOI = {10.1016/j.foodchem.2016.07.016}, keywords = {PLS, MIR, Durbin-Watson statistic, Variable selection, Binary mixtures, Oil adulteration}, journal = {Food chemistry}, doi = {10.1016/j.foodchem.2016.07.016}, volume = {213}, issn = {0308-8146}, title = {Durbin-Watson partial least-squares regression applied to MIR data on adulteration with edible oils of different origins}, keyword = {PLS, MIR, Durbin-Watson statistic, Variable selection, Binary mixtures, Oil adulteration} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati