Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

A general homeostatic principle following lesion induced dendritic remodeling (CROSBI ID 226527)

Prilog u časopisu | izvorni znanstveni rad

Platschek Steffen ; Cuntz Hermann ; Vukšić Mario ; Deller Thomas ; Jedlicka Peter A general homeostatic principle following lesion induced dendritic remodeling // Acta neuropathologica, 4 (2016), 1; 1-11. doi: 10.1186/s40478-016-0285-8.

Podaci o odgovornosti

Platschek Steffen ; Cuntz Hermann ; Vukšić Mario ; Deller Thomas ; Jedlicka Peter

engleski

A general homeostatic principle following lesion induced dendritic remodeling

Introduction: Neuronal death and subsequent denervation of target areas are hallmarks of many neurological disorders. Denervated neurons lose part of their dendritic tree, and are considered "atrophic", i.e. pathologically altered and damaged. The functional consequences of this phenomenon are poorly understood. Results: Using computational modelling of 3D-reconstructed granule cells we show that denervation-induced dendritic atrophy also subserves homeostatic functions: By shortening their dendritic tree, granule cells compensate for the loss of inputs by a precise adjustment of excitability. As a consequence, surviving afferents are able to activate the cells, thereby allowing information to flow again through the denervated area. In addition, action potentials backpropagating from the soma to the synapses are enhanced specifically in reorganized portions of the dendritic arbor, resulting in their increased synaptic plasticity. These two observations generalize to any given dendritic tree undergoing structural changes. Conclusions: Structural homeostatic plasticity, i.e. homeostatic dendritic remodeling, is operating in long-term denervated neurons to achieve functional homeostasis.

electrotonic analysis ; computer simulation ; compartmental modeling ; morphological modeling ; voltage attenuation ; backpropagating action potential ; homeostatic plasticity ; granule cell

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

4 (1)

2016.

1-11

objavljeno

0001-6322

10.1186/s40478-016-0285-8.

Povezanost rada

Temeljne medicinske znanosti

Poveznice
Indeksiranost