Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Insights on the neuromagnetic representation of temporal asymmetry in human auditory cortex (CROSBI ID 224152)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Tabas, Alejandro ; Siebert, Anita ; Supek, Selma ; Pressnitzer, Daniel ; Balaguer-Ballester ; Rupp, Andre Insights on the neuromagnetic representation of temporal asymmetry in human auditory cortex // PLoS One, 11 (2016), 4; e0153947-1-e0153947-21. doi: 10.1371/journal.pone.0153947

Podaci o odgovornosti

Tabas, Alejandro ; Siebert, Anita ; Supek, Selma ; Pressnitzer, Daniel ; Balaguer-Ballester ; Rupp, Andre

engleski

Insights on the neuromagnetic representation of temporal asymmetry in human auditory cortex

Communication sounds are typically asymmetric in time and human listeners are highly sensitive to this short-term temporal asymmetry. Nevertheless, causal neurophysiological correlates of auditory perceptual asymmetry remain largely elusive to our current analyses and models. Auditory modelling and animal electrophysiological recordings suggest that perceptual asymmetry results from the presence of multiple time scales of temporal integration, central to the auditory periphery. To test this hypothesis we recorded auditory evoked fields (AEF) elicited by asymmetric sounds in humans. We found a strong correlation between perceived tonal salience of ramped and damped sinusoids and the AEFs, as quantified by the amplitude of the N100m dynamics. The N100m amplitude increased with stimulus half-life time, showing a maximum difference between the ramped and damped stimulus for a modulation half-life time of 4 ms which is greatly reduced at 0.5 ms and 32 ms. This behaviour of the N100m closely parallels psychophysical data in a manner that: i) longer half-life times are associated with a stronger tonal percept, and ii) perceptual differences between damped and ramped are maximal at 4 ms half-life time. Furthermore, the N100m magnitude is successfully explained by two pitch perception models using multiple scales of temporal integration of auditory nerve activity patterns. This striking correlation between AEFs, perception, and model predictions suggests that the N100m reflects physiological mechanisms of temporal asymmetry processing of pitch.

magnetoencephalography; auditory evoked fields (AEF); N100m; temporal asymmetry processing; damped and ramped tones; auditory modelling; psychophysical studies

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

11 (4)

2016.

e0153947-1-e0153947-21

objavljeno

1932-6203

10.1371/journal.pone.0153947

Povezanost rada

Fizika

Poveznice
Indeksiranost