Some new results on assessment of ()J—gram filter
efficiency

Andrej Novak*, Kre§imir Krizanovi¢, Alen Lan¢i¢t and Mile Sikic?
*T§University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
Email: andrej.novak @fer.hr, kresimir.krizanovic @fer.hr, mile.sikic @fer.hr
iUniversity of Zagreb, Faculty of Science, Department of Mathematics, Croatia.
Email: alen@student.math.hr

Abstract—We present some new results on expectation and
threshold problem for contiguous and gapped ()—grams. We also
introduce a novel exhaustive search algorithm for determining the
threshold, based on (sparse) matrix formulation of the problem.
Computational results obtained with this algorithm show that the
@—gram filter has same threshold in the case of Hamming and
Levenshtein errors given that the number of errors is sufficiently
small.

I. INTRODUCTION

One of the oldest problems in computer science is finding
an approximate string matching of a relatively short string
called pattern in a long string called text. It finds applications
in various areas such as bioinformatics, text processing, pattern
recognition and signal processing (see [9], [10], [11]). For
these reasons, fast practical algorithms for approximate string
matching are still in high demand. There are several variants of
the approximate string matching problem but in this paper we
are interested in the problem of finding the distance between
two strings.

Let P and S be two strings such that d(S,P) = k.
In this paper we are going to present some theoretical and
computational results in the case when d is Hamming or
Levenshtein distance. Levenshtein distance leads to the k
difference problem, the minimum number of single character
insertions, deletions and replacements required to transform
one string into another. A simpler variant (Hamming distance)
is the k mismatches problem, which does not allow insertions
or deletions that makes it the number of non-matching charac-
ters between two strings of the same length. Hamming distance
can be used in practice when Levenshtein distance is difficult
to calculate and, as we will see in Section IV, filter performance
will be the same when k is small enough. It is useful to imagine
strings P and S in a manner that string .S is a string derived
from P by introducing k errors.

One way to speed up approximate string matching is use of
filters. A filter is an algorithm that quickly discards large parts
of the text based on some filter criterium. Filters usually have
preprocessing phase in which they build a data structure on
the text (an index) and use it afterward to speed up searches.
Many filters are based on ()-grams, substrings of length (). The
(Q—gram similarity of two strings is defined as the number
of ()-grams shared by these strings. Paper by Ukkonen [1]
presented the algorithm that finds the locally best approximate
occurrences of pattern string in text using (Q—gram similarity
as a measure. Its time complexity is linear with respect to the

text length. This algorithm takes into account only contigous
(Q—grams. A generalization of the contiguous (Q—grams is
given in the work by Burkhardt and Karkkainen [2] in a
form of gapped (Q—grams. Gapped (Q—gram is a subsets of
Q characters of a fixed noncontiguous shape. For example,
the Q—grams of shape zx — x in the string ACAGCT are
ACG, CAC and AGT. Burkhard and Karkkainen showed in
[2] that gapped (Q—grams can provide orders of magnitude
faster and more efficient filtering than contiguous ()—grams.
The same authors also showed in [3] how to extend one-gapped
(Q—grams for Levenshtein errors.

Beside theoretical estimates on ()J—gram filter efficiency,
in this paper, we propose a novel algorithm for computing the
threshold of @Q—gram filter in the case when d is Hamming
distance function. Threshold gives the minimum number of
(Q—grams that an approximate match must share with the
pattern. Our algorithm is based on sparse matrix formulation
of the threshold problem and that makes it suitable for parallel
implementation. Also, the most expensive step of the algorithm
is matrix-to-matrix multiplication what can be done, bellow
quadratic time (for one entry in resulting matrix) because
corresponding matrices are sparse.

The paper is organized as follows. After the introduction,
we introduce basic notation on (Q—grams and state some
generalizations of existing results on expected ()J—gram sim-
ilarity of two strings. Than we introduce a novel algorithm
for computing the threshold and estimate its time complexity.
Finally, we conclude the paper with computational results
obtained with the implementation of the proposed algorithm
and few comments that illustrate situations when Hamming
errors are a good approximation for Levenshtein errors in the
context of (J—grams.

II. MATHEMATICAL FORMALISM

Efficiency of a Q—gram filter can be determined by looking
at the number of Q—grams without error. In our work we
considered two basic measures, expectation and threshold. To
precisely define our theoretical and experimental work, we first
need to introduce some basic notation for ()—grams.

Let I € NU{0} be a finite set, i.e. the cardinal number of
I is finite. The span of [ is defined as span(I) = max(I) —
min(I) + 1.

The shape of I is the set Q@ = {i —min(I) : ¢ € I}.
For a shape ) and a natural number i € N we define set

Qi={i+j:jeqQ}



Given a string S = s152...5,, and shape () with cor-
responding sets @Q; = {i1,%2,...,44}, ¢ € {1,2,...,m —
span(Q) + 1}, we can define Q—gram on string .S, at position
i, based on shape Q as S[Q;] = 84, Siy - -- Si

Definition 2.1: If |Q| = span(Q) than shape @ is contigu-
ous, otherwise we say that @) is gapped shape.

We can observe that contiguous shapes generate contiguous
(Q—grams and gapped shapes generate gapped (Q—grams.

(Q—grams can be used to define a measure of similarity
between two strings. Q—gram similarity S, (P, S) for strings
P and S is the number of their common ()—grams, that is

sqQ(P,S) = |{i € [1,m —span(Q) + 1] : P(Q;) = S(Q:)}|-

Example 2.2: Let Q = {0,2,3} be a shape. Using previ-
ous notation we see that |Q)] = 3, and span(Q) = 4. The
string S = ACGACCGTA has six Q—grams S[Q1] = AGA,
5[Q2] = CAC, S[Qs] = GCC, S[Q4] = ACG, S[Qs5] = CGT, and
S[Qg] = CTA. If we define P = AGGATCGTA, than Hamming
distance d(S,P) = 2, but the (Q—gram similarity of P and
S is sg = 3 since P and () share three common ()—grams

S[Q1], S[Q4], and S[Qs].

Let us note that we can look at strings S and P, in the above
example, little differently. We can consider string S as the
original string, and we can say that string P is gained from
string S by introducing k errors, or in this case mutations.
This could correspond, for example, to genomes of two viruses
where one of them has mutated. In this case, the expected
similarity between S and P actually represents the number of
”good” ()J—grams in string P (i.e. (J—grams without errors).

A. Expectation

Expectation of the number of ()—grams without errors is
one of two filter efficiency measures that we considered in our
work. In the sequel we present some new results.

Proposition 2.3: Let S and P be given strings such that
d(S, P) = k, where d is Hamming distance. Then the expected
(Q—gram similarity between S and P is

E = (|S| = span(Q) + 1)(1 — k/|5])'?.

Proof. As we mentioned before, we can compare characters
P[i] and S[i], ¢ € {1,2,...,]S|} and mark k places where
Pli] # S[i] by a special character in one of the strings, say S.
We can than work only with one string keeping in mind that the
special character codes for error. Define an indicator random
variable X, i € {1,...,|S|—span(Q)+1} for i—th Q—gram.
That is, X; = 1 if S[Q;] does not contain special character,
else X; = 0.Let z = |S|—span(Q)+1,now Y =>" | X; is
wanted random variable. By using the linearity of expectation
we obtain
EY]=E[y_ Xi]=) E[X]=2) (1-k/S)*
i=1 i=1 i=1
— (] - span(@Q) + (1~ k/|S)) <.
|

We can go one step further towards a potential (J—gram
filter application and determine a similar formula in the case

when, besides mismatch, deletions and insertions are also
allowed. In the statement of the following proposition, instead
of a fixed number of errors (of each type), we use probabilities
for mismatch, deletion and insertion. Note that the same could
have been done in Proposition 2.3. by defining the probability
p = k/|S| that a randomly chosen character in P is different
from the character on the same position in S.

Proposition 2.4: Let S be a string and let p,r and s be
appropriate probabilities of mismatch, deletion and insertion,
respectively. The expected number of contiguous ()—grams
without error is

E= (S|~ 1Ql+ D1 ~p—s5-1).

Proof. Define indicator random variable X; i € {1,...,|S| —
|Q| +1} for i—th Q—gram. That is, X; = 1 if S[Q;] does not
contain either a mismatch or inserted character and none of its
@ characters has been deleted, else X; = 0. Then, P(X; =
1) = (1—p—s—7)!9l is the probability that given character is
not a mismatch or that it has not been inserted. Let z = |S| —
|Q|+1,now Y =>"7 | X; is wanted random variable. Using
the linearity of expectation as in the proof of the Proposition
2.3 we obtain the result. n

Until now, we have considered only (Q—grams that do not
contain any error to be “good”. If we weaken that condition
and consider a ()—gram to be good if it contains at most € > 0
errors of Hamming type, we can deduce the following result.

Proposition 2.5: Let S be a string and let p be the proba-
bility of a mismatch. Expected number of (J—grams with up
to € errors is given by

E= (5| —span(Q) + 1)} (Span(Q)> (1 — p)y (@1l

=0 :

Proof. Repeat the proof of Proposition 2.4. with random
variable X; such that X; = 1 if S[Q;] contains at most
errors and X; = 0 otherwise.

This gives P(X; = 1) = >, (Sparll(Q))(l — p)sPan(@)—ipl,
Proceeding as before and using the linearity of expectation we
obtain the result. |
Although theoretically interesting, expectation is a rough

method of measuring ()—gram efficiency.

B. Threshold

In this section we will consider another measure of the
@Q—gram filter efficiency. If we keep the original string size
and the number of errors constant, the threshold is defined
as the minimum number of (J—grams without errors over all
possible error distributions. In the case of contiguous shape @),
the threshold can be determined from the well known (Q—gram
lemma.

Lemma 2.6: Let P and S be given strings such that
d(P,S) = k, where d can be either Hamming or Levenshtein
distance. Let () be a contiguous shape. The (Q—gram similarity
of P and S is at least

t =maz{|S| - Q| + 1 - k|Q], 0}



If the number of errors is small enough we can generalize
the previous formula to include gapped shapes. More precisely,
the following holds:

Lemma 2.7: Let P and S be strings such that d(P,S) =
k in Hamming or Levenshtein distance where k£ <
min(|PJ,|S])/span(Q). Then, Q—gram similarity of P and
S is at least:

t = max{|S| —span(Q) + 1 — k - span(@),0}. (1)
|

In general, last formula can be considered as a lower bound
for the threshold. With a low error rate, the formula actually
gives an exact threshold value. However, as the error rate
increases, it becomes overly pessimistic, giving values that are
significantly lower then the actual threshold.

Example 2.8: Let Q = {0,2,3} and S = AxCTGx be
given. Formula (1) yields ¢ = max{6 —4+1—3-2,0} =0,
but we have S[Q1] = ACT unaffected by errors, and therefore
t=1.

We were unable to provide a general closed formula for
calculating the threshold. Instead of a closed formula, we will
propose an algorithm for computing it.

III. MATMAT THRESHOLD ALGORITHM

Since [1] was published, several authors proposed algo-
rithms for computation of threshold [2], [8], [7]. In a way,
majority of them is based on dynamic programming. The
essence of our algorithm is exhaustive search based on the
matrix formulation of the problem and sparse structure of the
corresponding matrices. This approach is useful if one wants
to compute the threshold of multiple (Q—grams while keeping
the length of the string and the number of errors fixed.

Definition 3.1: Let X and Y be two matrices such that
their matrix product Z = XY is well defined. A defect product
Z = XXY is a matrix of zeros and ones whose elements are
defined by the following formula

_ {17 if Y ohey Tikks > 0,
Zij =

0, otherwise.

A. Problem definition

To describe the matrix formulation of the threshold prob-
lem first we need to define two matrices: ()J—gram matrix Q
and error matrix E. Q—gram matrix Q encodes the movement
of the given shape () along the string being analysed, while
error matrix E encodes all possible error distributions (k errors
in a string of length n).

First, we will define a vector ¢ = [g;], of length n. For a
given shape @, vector g is defined by

1, i-1eq,
4= 0, otherwise,
;|| = span(@Q) + 1.
Q—gram matrix Q has (n — span(Q) + 1) rows and n

columns. The i*" row of matrix Q corresponds to the vector
g such that Q(i,7 : i + span(Q) — 1) = q.

where 1 =1,2,...

Error matrix E has n rows and (Z) columns. Its columns

represent all possible combinations of n — k zeroes and k ones.
Each column represents one error distribution, where zeroes
represent ”good” characters, while ones represent errors.

It is significant to note that, due to the fact that both k£ and
|@Q| are a lot smaller than n, in general both matrices Q and
E are sparse.

B. Computing the threshold

The threshold for a given ()J—gram can be computed from
the defect product of matrices Q and E.

Proposition 3.2: The threshold for (Q—gram shape () can
be calculated as

t =n—span(Q) + 1 — [|C||1,
where C = QX E. u

One row of matrix Q represents one (Q—gram of original
string S' and one column of matrix E represents positions of the
errors. Within the defect product of two matrices, the element
gained from a single row of matrix Q and single column
of matrix E represents whether corresponding (Q—gram will
contain errors applied to a corresponding error distribution.
The matrix C, obtained as the defect product of Q and E, will
have (n—span(Q)+1) rows (one for each ()—gram in original
string) and (Z) columns (one for each error distribution).
Each column of matrix C will have zero on positions where
(Q—grams contain no errors, and one on positions where
(Q—grams contain one or more errors. The column with the
most ones will represent the worst case error distribution,
having the least number of (Q—grams without errors. The
threshold can be calculated by finding the column with the
most ones, summing up all ones to get the number of erroneous
(Q—grams and subtracting that number from the total number
of (Q—grams. This is exactly what the formula presented above
does.

C. Algorithm complexity

In order to compute the time complexity let us remark that
defect product of one row of matrix Q by one column of
matrix E can be computed in O(|Q)])) operations rather than
in O(2|Q|*>—|Q)|) as a standard matrix to vector multiplication.
That gives O(|Q|(n — span(Q) + 1)) for computation of one
column of matrix C, and in general O(|Q|(n — span(Q) +
1)(})) for the whole matrix C. Constant |Q| can be further
decreased with the reduction of the dimension of matrix E if
symmetric error distributions are omitted.

Definition 3.3: We say that vectors v = (v1,v2,...,0,)
and u = (u1,ug,...,u,) are symmetric if v; = w,_;, ¢ =
1,2,...,n.

We can now easily conclude the following.

Lemma 3.4: Let v and v be symmetric vectors. Than ||C'X
ulli = [C Rl

We see that symmetric (distribution of errors) columns of
matrix E yield the same number of (Q—grams with out error
and therefore the number of columns can be reduced by
half resulting in the equal reduction of constant |@Q| in the



complexity formula. Finally, time complexity of MatMat is
given by O (@(n — span(Q) + 1)(:))

IV. COMPUTATIONAL RESULTS

In this section we present results obtained by implementing
the MatMat algorithm for determining the threshold described
in the previous section. Of our particular interest were one
and two gapped (Q—grams. Results are presented in Table 1
and Table 2 bellow. In the case of Hamming errors (mismatch
only), thresholds were computed with MatMat and in the
case of Levenshtein errors (mismatch, insertions and deletions)
exhaustive search over all possible scenarios was applied. It
is interesting to note that when k is small enough, there is
no difference in threshold between Hamming and Levenshtein
errors. That supports our claim that Hamming errors are a good
model for simulating real world situations (Levenshtein errors)
if the probability of error is small enough.

TABLE I: Shapes with one gap applied to the string with n =
50. Only Hamming errors are considered.

Shape k | Threshold
{0,2,3,45,6,7.89} | 3 14
4 5
5 1
6 0
{0,1,3,45,6,7.89} | 3 14
4 5
5 2
6 0
{0,1,2,4,56,789} | 3 14
4 5
5 3
6 1
7 0
{0,2,3,4,56,789} | 3 14
4 5
5 3
6 0

TABLE II: Gapped shapes applied to a string with n = 50.
Threshold H is computed on a string with Hamming errors and
Threshold L is computed on a string with Levenshtein errors.

Shape k | Threshold H Threshold L
{0,2,3,4,6,7,89} | 3 17 17
4 9 9
5 6 2
6 4 0
7 2 0
8 0 0
{0,1,3,5,6,789} | 0 41 41
1 33 33
2 25 25
3 17 17
4 9 9
5 6 2
6 3 0
7 2 0
8 0 0

Furthermore, we have performed tests to find out the probabil-
ity mass function of a number of (Q—grams without errors with
respect to a fixed numbers of errors in a string. For each num-
ber of errors k we have performed 5-10° experiments in which
random positions of errors were chosen and the number of
(Q—grams without errors was determined. By interpolating the
computed data with the function f(z) = z%~%**¢ a,b,c € R

we have managed to obtain coefficient of determination R-
square greater than 0.998 and RMSE < 1073, Results for
shape @ = {0, 1,3,5,6,7,8,9} are presented on Figure 1 and
Table 3.
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Fig. 1: The probability mass function for shape @ =

{0,1,3,5,6,7,8,9} and its interpolation are represented by
black dots and a continuous blue line, respectively. Length of
string is n = 50 and number of errors are
@k=40b k=5 (k=6 k="

TABLE III: Parameters obtained by fitting the experimental
data for shape @ = {0,1,3,5,6,7,8,9}

k a b c RMSE R-squared
4 | 29.08 1.444 -60.46 0.001449 0.9983
5 18.81 1.137 -36.21 | 0.0007293 0.9996
6 | 12.84 | 0.9549 | -22-77 0.000936 0.9993
7 | 9209 | 0.8498 | -14.93 0.001437 0.9985

V. CONCLUSION AND FUTURE WORK

In this paper we have extended some known analytical
results on contiguous and gapped (Q—grams. Motivated by the
problem of assessing (Q—grams, we also proposed a novel
algorithm for computing the threshold. Advantages of the
proposed algorithm are in its simple implementation, possible
parallelization, and fast sparse matrix to matrix multiplications.
Disadvantages, on the other hand, are large dimensions of the
matrices involved in computation. In our future work we plan
to adopt presented algorithm for Levenshtein errors.
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