Napredna pretraga

Pregled bibliografske jedinice broj: 784400

A realization of certain modules for the N=4 superconformal algebra and the affine Lie algebra A_2 ^(1)


Adamović, Dražen
A realization of certain modules for the N=4 superconformal algebra and the affine Lie algebra A_2 ^(1) // Transformation groups, 21 (2016), 2; 299-327 doi:10.1007/s00031-015-9349-2 (međunarodna recenzija, članak, znanstveni)


Naslov
A realization of certain modules for the N=4 superconformal algebra and the affine Lie algebra A_2 ^(1)
(A realization of certain modules for the N=4 superconformal algebra and the affine Lie algebra A_2 ^{; ; ; (1)}; ; ;)

Autori
Adamović, Dražen

Izvornik
Transformation groups (1083-4362) 21 (2016), 2; 299-327

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Vertex superalgebras ; affine Lie algebras ; admissible representations ; N = 4 superconformal algebra ; logarithmic CFT

Sažetak
We shall first present an explicit realization of the simple $N=4$ superconformal vertex algebra $L_{; ; ; c}; ; ; ^{; ; ; N=4}; ; ; $ with central charge $c=-9$. This vertex superalgebra is realized inside of the $ b c \beta \gamma $ system and contains a subalgebra isomorphic to the simple affine vertex algebra $L_{; ; ; A_1}; ; ; (- \tfrac{; ; ; 3}; ; ; {; ; ; 2}; ; ; \Lambda_0)$. Then we construct a functor from the category of $L_{; ; ; c}; ; ; ^{; ; ; N=4}; ; ; $-- modules with $c=-9$ to the category of modules for the admissible affine vertex algebra $L_{; ; ; A_{; ; ; 2}; ; ; }; ; ; (-\tfrac{; ; ; 3}; ; ; {; ; ; 2}; ; ; \Lambda_0)$. By using this construction we construct a family of weight and logarithmic modules for $L_{; ; ; c}; ; ; ^{; ; ; N=4}; ; ; $ and $L_{; ; ; A_{; ; ; 2}; ; ; }; ; ; (- \tfrac{; ; ; 3}; ; ; {; ; ; 2}; ; ; \Lambda_0)$. We also show that a coset subalgebra of $L_{; ; ; A_{; ; ; 2}; ; ; }; ; ; (- \tfrac{; ; ; 3}; ; ; {; ; ; 2}; ; ; \Lambda_0)$ is an logarithmic extension of the $W(2, 3)$-- algebra with $c=-10$. We discuss some generalizations of our construction based on the extension of affine vertex algebra $L_{; ; ; A_1}; ; ; (k \Lambda_0)$ such that $k+2 = 1/p$ and $p$ is a positive integer.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
HRZZ-IP-2013-11-2634 - Algebarske i kombinatorne metode u teoriji verteks algebri (Dražen Adamović, )

Ustanove
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Autor s matičnim brojem:
Dražen Adamović, (196061)

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka:


  • MathSciNet
  • Zentralblatt fur Mathematik


Citati