Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom (CROSBI ID 221789)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Feng, Jiang Dong ; Liu, Ke ; Graf, Michael ; Lihter, Martina ; Bulushev, Roman D. ; Dumcenco, Dumitru ; Alexander, Duncan T. L. ; Krasnozhon, Daria ; Vuletic, Tomislav ; Kis, Andras et al. Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom // Nano letters, 15 (2015), 5; 3431-3438. doi: 10.1021/acs.nanolett.5b00768

Podaci o odgovornosti

Feng, Jiang Dong ; Liu, Ke ; Graf, Michael ; Lihter, Martina ; Bulushev, Roman D. ; Dumcenco, Dumitru ; Alexander, Duncan T. L. ; Krasnozhon, Daria ; Vuletic, Tomislav ; Kis, Andras ; Rađenović, Aleksandra

engleski

Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom

Ultrathin nanopore membranes based on 2D materials have demonstrated ultimate resolution toward DNA sequencing. Among them, molybdenum disulphide (MoS2) shows long-term stability as well as superior sensitivity enabling high throughput performance. The traditional method of fabricating nanopores with nanometer precision is based on the use of focused electron beam in transmission electron microscope (TEM). This nanopore fabrication process is time-consuming, expensive, not scalable and hard to control below 1 nm. Here, we exploited the electrochemical activity of MoS2 and developed a convenient and scalable method to controllably make nanopores in a single layer MoS2 with sub-nanometer precision using electrochemical reaction (ECR). The electrochemical reaction of a single layer MoS2 is initiated at the location of defects or single atom vacancy, followed by the successive removals of individual atoms or unit cells from single layer MoS2 lattice and finally formation of a nanopore. Step-like features in the ionic current through the growing nanopore provide direct feedback on the nanopore size inferred from a widely used conductance vs. pore size model. Furthermore, DNA translocations can be detected in-situ when as-fabricated MoS2 nanopores are used. The atomic resolution and accessibility of this approach paves the way for mass production of nanopores in 2D membranes for potential solid-state nanopore sequencing.

solid-state nanopores; 2D materials; molybdenum disulphide (MoS2); electrochemical reaction (ECR); DNA translocation

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

15 (5)

2015.

3431-3438

objavljeno

1530-6984

10.1021/acs.nanolett.5b00768

Povezanost rada

Fizika

Poveznice
Indeksiranost