Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 773881

Statistical inference algorithms for epidemic processes on complex networks


Antulov-Fantulin, Nino
Statistical inference algorithms for epidemic processes on complex networks, 2015., doktorska disertacija, Fakultet elektrotehnike i računarstva, Zagreb


CROSBI ID: 773881 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Statistical inference algorithms for epidemic processes on complex networks

Autori
Antulov-Fantulin, Nino

Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija

Fakultet
Fakultet elektrotehnike i računarstva

Mjesto
Zagreb

Datum
7.4

Godina
2015

Stranica
107

Mentor
Šikić, Mile ; Šmuc, Tomislav

Ključne riječi
complex networks; epidemic spreading algorithms; statistical inference

Sažetak
The main topics of this dissertation are novel methods and algorithms for the modelling and the statistical inference about epidemic processes based on the Susceptible-Infected-Recovered (SIR) model on arbitrary network structures. Two types of problems are solved: (i) estimation of the final epidemic outcome ("forward in time" statistical estimate) and (ii) estimation of epidemic initial conditions from a single epidemic realization ("backward in time" statistical inference). In order to estimate the final epidemic outcome on arbitrary networks without following the temporal dynamics, a novel FastSIR algorithm is constructed. The FastSIR algorithm is using a probability distribution of the number of infected nodes in a first neighbourhood in a limit of time to speed up the simulation. In the backward statistical inference, we solve two problems: (a) the detection of a single epidemic source from a realization and (b) the recognition that a realization has multiple initial sources. A number of different statistical estimators are presented for determining the likelihood for potential source producing the observed epidemic realization. The estimates are based on the Monte Carlo simulations of an epidemic spreading process on a network from a set of potential source candidates, which were infected in the observed realization. This statistical inference framework is applicable to arbitrary networks and different dynamical spreading processes. The problem of multiple-source epidemic recognition from a single realization is solved by constructing a statistical outlier detection algorithm, which is based on the Kolmogorov-Smirnov statistics over realization similarity distributions.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mile Šikić (mentor)

Avatar Url Nino Antulov-Fantulin (autor)

Avatar Url Tomislav Šmuc (mentor)

Citiraj ovu publikaciju

Antulov-Fantulin, Nino
Statistical inference algorithms for epidemic processes on complex networks, 2015., doktorska disertacija, Fakultet elektrotehnike i računarstva, Zagreb
Antulov-Fantulin, N. (2015) 'Statistical inference algorithms for epidemic processes on complex networks', doktorska disertacija, Fakultet elektrotehnike i računarstva, Zagreb.
@phdthesis{phdthesis, author = {Antulov-Fantulin, N.}, year = {2015}, pages = {107}, keywords = {complex networks, epidemic spreading algorithms, statistical inference}, title = {Statistical inference algorithms for epidemic processes on complex networks}, keyword = {complex networks, epidemic spreading algorithms, statistical inference}, publisherplace = {Zagreb} }
@phdthesis{phdthesis, author = {Antulov-Fantulin, N.}, year = {2015}, pages = {107}, keywords = {complex networks, epidemic spreading algorithms, statistical inference}, title = {Statistical inference algorithms for epidemic processes on complex networks}, keyword = {complex networks, epidemic spreading algorithms, statistical inference}, publisherplace = {Zagreb} }




Contrast
Increase Font
Decrease Font
Dyslexic Font