Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 766634

TKLBLIIR: Detecting Twitter Paraphrases with TweetingJay


Karan, Mladen; Glavaš, Goran; Šnajder, Jan; Dalbelo Bašić, Bojana; Vulić, Ivan; Moens, Marie Francine
TKLBLIIR: Detecting Twitter Paraphrases with TweetingJay // Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015) / Nakov, Preslav ; Zesch, Torsten ; Cer, Daniel ; Jurgens, David (ur.).
Denver: ACL, 2015. str. 70-74 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 766634 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
TKLBLIIR: Detecting Twitter Paraphrases with TweetingJay

Autori
Karan, Mladen ; Glavaš, Goran ; Šnajder, Jan ; Dalbelo Bašić, Bojana ; Vulić, Ivan ; Moens, Marie Francine

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015) / Nakov, Preslav ; Zesch, Torsten ; Cer, Daniel ; Jurgens, David - Denver : ACL, 2015, 70-74

Skup
9th International Workshop on Semantic Evaluation (SemEval 2015)

Mjesto i datum
Danver, SAD, 31.5.-6.6.2015

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
paraphrase detection ; tweets ; semantic similarity

Sažetak
When tweeting on a topic, Twitter users often post messages that convey the same or similar meaning. We describe TweetingJay, a system for detecting paraphrases and semantic similarity of tweets, with which we participated in Task 1 of SemEval 2015. TweetingJay uses a supervised model that combines semantic overlap and word alignment features, previously shown to be effective for detecting semantic textual similarity. TweetingJay reaches 65.9% F1-score and ranked fourth among the 18 participating systems. We additionally provide an analysis of the dataset and point to some peculiarities of the evaluation setup.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
036-1300646-1986 - Otkrivanje znanja u tekstnim podacima (Dalbelo-Bašić, Bojana, MZOS ) ( POIROT)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Goran Glavaš (autor)

Avatar Url Bojana Dalbelo (autor)

Avatar Url Jan Šnajder (autor)

Avatar Url Mladen Karan (autor)

Citiraj ovu publikaciju:

Karan, Mladen; Glavaš, Goran; Šnajder, Jan; Dalbelo Bašić, Bojana; Vulić, Ivan; Moens, Marie Francine
TKLBLIIR: Detecting Twitter Paraphrases with TweetingJay // Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015) / Nakov, Preslav ; Zesch, Torsten ; Cer, Daniel ; Jurgens, David (ur.).
Denver: ACL, 2015. str. 70-74 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Karan, M., Glavaš, G., Šnajder, J., Dalbelo Bašić, B., Vulić, I. & Moens, M. (2015) TKLBLIIR: Detecting Twitter Paraphrases with TweetingJay. U: Nakov, P., Zesch, T., Cer, D. & Jurgens, D. (ur.)Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015).
@article{article, author = {Karan, Mladen and Glava\v{s}, Goran and \v{S}najder, Jan and Dalbelo Ba\v{s}i\'{c}, Bojana and Vuli\'{c}, Ivan and Moens, Marie Francine}, year = {2015}, pages = {70-74}, keywords = {paraphrase detection, tweets, semantic similarity}, title = {TKLBLIIR: Detecting Twitter Paraphrases with TweetingJay}, keyword = {paraphrase detection, tweets, semantic similarity}, publisher = {ACL}, publisherplace = {Danver, SAD} }
@article{article, author = {Karan, Mladen and Glava\v{s}, Goran and \v{S}najder, Jan and Dalbelo Ba\v{s}i\'{c}, Bojana and Vuli\'{c}, Ivan and Moens, Marie Francine}, year = {2015}, pages = {70-74}, keywords = {paraphrase detection, tweets, semantic similarity}, title = {TKLBLIIR: Detecting Twitter Paraphrases with TweetingJay}, keyword = {paraphrase detection, tweets, semantic similarity}, publisher = {ACL}, publisherplace = {Danver, SAD} }




Contrast
Increase Font
Decrease Font
Dyslexic Font