Napredna pretraga

Pregled bibliografske jedinice broj: 765849

Global solution to 1D model of a compressible viscous micropolar heat-conducting fluid with a free boundary


Mujaković, Nermina; Črnjarić-Žic, Nelida
Global solution to 1D model of a compressible viscous micropolar heat-conducting fluid with a free boundary // Acta mathematica scientia, 36 (2016), 6; 1541-1576 doi:10.1016/S0252-9602(16)30090-X (međunarodna recenzija, članak, znanstveni)


Naslov
Global solution to 1D model of a compressible viscous micropolar heat-conducting fluid with a free boundary

Autori
Mujaković, Nermina ; Črnjarić-Žic, Nelida

Izvornik
Acta mathematica scientia (0252-9602) 36 (2016), 6; 1541-1576

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Micropolar fluid flow; initial-boundary value problem; free boundary; finite difference approximations; strong and weak convergence

Sažetak
In this paper we consider the nonstationary 1D flow of the compressible viscous and heatconducting micropolar fluid, assuming that it is in the thermodynamically sense perfect and polytropic. The fluid is between a static solid wall and a free boundary connected to a vacuum state. We take the homogeneous boundary conditions for velocity, microrotation and heat flux on the solid border and that the normal stress, heat flux and microrotation are equal to zero on the free boundary. The proof of the global existence of the solution is based on a limit procedure. We define the finite difference approximate equations system and construct the sequence of approximate solutions that converges to the solution of our problem globally in time.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Temeljne tehničke znanosti



POVEZANOST RADA


Ustanove
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci,
Sveučilište u Rijeci - Odjel za matematiku

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka:


  • MathSciNet


Citati