Napredna pretraga

Pregled bibliografske jedinice broj: 757634

Video Frame Copy-Move Forgery Detection Based on Cellular Automata and Local Binary Patterns


Tralic, D.; Grgic, S., Zovko-Cihlar, Z.
Video Frame Copy-Move Forgery Detection Based on Cellular Automata and Local Binary Patterns // Proceedings of 2014 X International Symposium on Telecommunication
Sarajevo, BiH, 2014. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


Naslov
Video Frame Copy-Move Forgery Detection Based on Cellular Automata and Local Binary Patterns

Autori
Tralic, D. ; Grgic, S., Zovko-Cihlar, Z.

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of 2014 X International Symposium on Telecommunication / - Sarajevo, BiH, 2014

ISBN
978-1-4799-4136-0

Skup
2014 X International Symposium on Telecommunication

Mjesto i datum
Sarajevo, Hosnia and Herzegovina, 27-29.10.2014

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Video Copy-Move Forgery; Cellular Automata; Local Binary Pattern

Sažetak
Copy-move forgery (CMF) is a common image forgery method that implies copying and moving a part of image to a new location in the same image. In video sequences, CMF can be accomplished by copying a set of frames and pasting them to a new location in the same sequence. The result of this process is usually changing of video content. To identify video CMF, it is necessary to develop a robust descriptor for identification of duplicated video frames. This paper presents a novel method where Cellular Automata (CA) and Local Binary Patterns (LBPs) are used as texture descriptors. The main idea is to divide every frame into overlapping blocks and use CA to learn a set of rules for every block in a frame. Those rules appropriately describe the intensity changes in every block so their histogram can be used as a feature for detection of duplicated frames. Experimental testing showed a good performance of a proposed method for detection of video CMF in all tested cases.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Ustanove
Fakultet elektrotehnike i računarstva, Zagreb