Napredna pretraga

Pregled bibliografske jedinice broj: 755483

Development of Gradient Retention Model in Ion Chromatography. Part III: Fuzzy Logic QSRR Approach


Ukić, Šime; Novak, Mirjana; Krilić, Anamarija; Avdalović, Nebojša; Liu, Yan; Buszewski, Bogusław; Bolanča, Tomislav
Development of Gradient Retention Model in Ion Chromatography. Part III: Fuzzy Logic QSRR Approach // Chromatographia, 78 (2015), 3; 889-898 doi:10.1007/s10337-015-2845-7 (međunarodna recenzija, članak, znanstveni)


Naslov
Development of Gradient Retention Model in Ion Chromatography. Part III: Fuzzy Logic QSRR Approach

Autori
Ukić, Šime ; Novak, Mirjana ; Krilić, Anamarija ; Avdalović, Nebojša ; Liu, Yan ; Buszewski, Bogusław ; Bolanča, Tomislav

Izvornik
Chromatographia (0009-5893) 78 (2015), 3; 889-898

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Ion chromatography; QSRR; gradient retention model; fuzzy logic; ANFIS

Sažetak
In this paper, the authors tested methodology that overcame the most common limitation of quantitative structure-retention relationship (QSRR) models: their limited applicability at the specific conditions for which models were developed. The modeling was performed on ion chromatographic analysis of “wood sugars”. Adaptive neuro-fuzzy interference system, an advanced artificial intelligence regression tool, was applied in combination with genetic algorithm scanning to obtain good and reliable QSRR models. The obtained QSRR models were applied for predicting data that were required for further development of general isocratic and gradient retention models. All three developed models (QSRR, isocratic, and gradient) indicated good prediction ability with root mean square error of prediction ≤0.1557. The performances of the methodology were compared with those presented in previous research—namely genetic algorithm in combinations with—stepwise multiple linear regression, partial least squares, uninformative variable elimination–partial least squares, and artificial neural network regression.

Izvorni jezik
Engleski

Znanstvena područja
Kemija, Kemijsko inženjerstvo



POVEZANOST RADA


Projekt / tema
110005
125-1253092-3004 - Procesi ionske izmjene u sustavu kvalitete industrijskih voda (Tomislav Bolanča, )

Ustanove
Fakultet kemijskog inženjerstva i tehnologije, Zagreb

Citiraj ovu publikaciju

Ukić, Šime; Novak, Mirjana; Krilić, Anamarija; Avdalović, Nebojša; Liu, Yan; Buszewski, Bogusław; Bolanča, Tomislav
Development of Gradient Retention Model in Ion Chromatography. Part III: Fuzzy Logic QSRR Approach // Chromatographia, 78 (2015), 3; 889-898 doi:10.1007/s10337-015-2845-7 (međunarodna recenzija, članak, znanstveni)
Ukić, Š., Novak, M., Krilić, A., Avdalović, N., Liu, Y., Buszewski, B. & Bolanča, T. (2015) Development of Gradient Retention Model in Ion Chromatography. Part III: Fuzzy Logic QSRR Approach. Chromatographia, 78 (3), 889-898 doi:10.1007/s10337-015-2845-7.
@article{article, year = {2015}, pages = {889-898}, DOI = {10.1007/s10337-015-2845-7}, keywords = {ion chromatography, QSRR, gradient retention model, fuzzy logic, ANFIS}, journal = {Chromatographia}, doi = {10.1007/s10337-015-2845-7}, volume = {78}, number = {3}, issn = {0009-5893}, title = {Development of Gradient Retention Model in Ion Chromatography. Part III: Fuzzy Logic QSRR Approach}, keyword = {ion chromatography, QSRR, gradient retention model, fuzzy logic, ANFIS} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati