Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Elastin aging and lipid oxidation products in human aorta (CROSBI ID 216985)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Žarković, Kamelija ; Larroque-Cardoso, Pauline ; Pucelle, Mellanie ; Salvayre, Robert ; Waeg, Georg ; Nègre-Salvayre, Anne ; Žarkovic, Neven Elastin aging and lipid oxidation products in human aorta // Redox Biology, 4 (2015), 109-117. doi: 10.1016/j.redox.2014.12.008

Podaci o odgovornosti

Žarković, Kamelija ; Larroque-Cardoso, Pauline ; Pucelle, Mellanie ; Salvayre, Robert ; Waeg, Georg ; Nègre-Salvayre, Anne ; Žarkovic, Neven

engleski

Elastin aging and lipid oxidation products in human aorta

Vascular aging is associated with structural and functional modifications of the arteries, and by an increase in arterial wall thickening in the intima and the media, mainly resulting from structural modifications of the extracellular matrix (ECM) components. Among the factors known to accumulate with aging, advanced lipid peroxidation end products (ALEs) are a hallmark of oxidative stress-associated diseases such as atherosclerosis. Aldehydes generated from the peroxidation of polyunsaturated fatty acids (PUFA), (4-hydroxynonenal, malondialdehyde, acrolein), form adducts on cellular proteins, leading to a progressive protein dysfunction with consequences in the pathophysiology of vascular aging. The contribution of these aldehydes to ECM modification is not known. This study was carried out to investigate whether aldehyde-adducts are detected in the intima and media in human aorta, whether their level is increased in vascular aging, and whether elastin fibers are a target of aldehyde-adduct formation. Immunohistological and confocal immunofluorescence studies indicate that 4-HNE-histidine-adducts accumulate in an age-related manner in the intima, media and adventitia layers of human aortas, and are mainly expressed in smooth muscle cells. In contrast, even if the structure of elastin fiber is strongly altered in the aged vessels, our results show that elastin is not or very poorly modified by 4-HNE. These data indicate a complex role for lipid peroxidation and in particular for 4-HNE in elastin homeostasis, in the vascular wall remodeling during aging and atherosclerosis development.

4-hydroxynonenal ; Elastin ; Atherosclerosis ; Smooth muscle cells ; Extracellular matrix ; Aging

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

4

2015.

109-117

objavljeno

2213-2317

10.1016/j.redox.2014.12.008

Povezanost rada

Biotehnologija

Poveznice
Indeksiranost