Napredna pretraga

Pregled bibliografske jedinice broj: 748578

On Jacquet modules of representations of segment type


Matić, Ivan; Tadić, Marko
On Jacquet modules of representations of segment type // Manuscripta mathematica, 147 (2015), 3; 437-476 doi:10.1007/s00229-015-0727-9 (međunarodna recenzija, članak, znanstveni)


Naslov
On Jacquet modules of representations of segment type

Autori
Matić, Ivan ; Tadić, Marko

Izvornik
Manuscripta mathematica (0025-2611) 147 (2015), 3; 437-476

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
P-adic division algebras; cuspidal representations; square integrable representations; tempered representations; irreducibility

Sažetak
A new simple (local) proof of two principal results about irreducible tempered representations of general linear groups over a non-archimedean local division algebra is given in this paper. The first is a proof of the parameterization of the irreducible square integrable representations of these groups by segments of cuspidal representations. The second is a proof of the irreducibility of the tempered parabolic induction. The proofs are based on Jacquet modules (and the Geometric Lemma, incorporated in the structure of a Hopf algebra). Only some very basic general facts of the representation theory of reductive p-adic groups are used in the proofs.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
HRZZ-IP-2013-11-9364 - Automorfne forme, reprezentacije i primjene (Goran Muić, )

Ustanove
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Autor s matičnim brojem:
Ivan Matić, (278646)
Marko Tadić, (48933)

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati