Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Physical properties of the lipid bilayer membrane made of cortical and nuclear bovine lens lipids: EPR spin-labeling studies (CROSBI ID 213287)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Raguž, Marija ; Widomska, Justyna ; Dillon, James ; Gaillard, Elizabeth R ; Subczynski, Witold Karol Physical properties of the lipid bilayer membrane made of cortical and nuclear bovine lens lipids: EPR spin-labeling studies // Biochimica et biophysica acta. Biomembranes, 1788 (2009), 11; 2380-2388. doi: 10.1016/j.bbamem.2009.09.005

Podaci o odgovornosti

Raguž, Marija ; Widomska, Justyna ; Dillon, James ; Gaillard, Elizabeth R ; Subczynski, Witold Karol

engleski

Physical properties of the lipid bilayer membrane made of cortical and nuclear bovine lens lipids: EPR spin-labeling studies

The physical properties of membranes derived from the total lipids extracted from the lens cortex and nucleus of a 2-year-old cow were investigated using EPR spin-labeling methods. Conventional EPR spectra and saturation-recovery curves show that spin labels detect a single homogenous environment in membranes made from cortical lipids. Properties of these membranes are very similar to those reported by us for membranes made of the total lipid extract of 6-month-old calf lenses (J. Widomska, M. Raguz, J. Dillon, E. R. Gaillard, W. K. Subczynski, Biochim. Biophys. Acta 1768 (2007) 1454-1465). However, in membranes made from nuclear lipids, two domains were detected by the EPR discrimination by oxygen transport method using the cholesterol analogue spin label and were assigned to the bulk phospholipid-cholesterol domain (PCD) and the immiscible cholesterol crystalline domain (CCD), respectively. Profiles of the order parameter, hydrophobicity, and the oxygen transport parameter are practically identical in the bulk PCD when measured for either the cortical or nuclear lipid membranes. In both membranes, lipids in the bulk PCD are strongly immobilized at all depths. Hydrophobicity and oxygen transport parameter profiles have a rectangular shape with an abrupt change between the C9 and C10 positions, which is approximately where the steroid ring structure of cholesterol reaches into the membrane. The permeability coefficient for oxygen, estimated at 35 degrees C, across the bulk PCD in both membranes is slightly lower than across the water layer of the same thickness. However, the evaluated upper limit of the permeability coefficient for oxygen across the CCD (34.4 cm/s) is significantly lower than across the water layer of the same thickness (85.9 cm/s), indicating that the CCD can significantly reduce oxygen transport in the lens nucleus.

lens lipids ; lens cortex ; lens nucleus ; cholesterol ; cholesterol crystalline domain ; membrane ; spin

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

1788 (11)

2009.

2380-2388

objavljeno

0005-2736

10.1016/j.bbamem.2009.09.005

Povezanost rada

Fizika, Biologija

Poveznice
Indeksiranost