Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Zebrafish genome instability after exposure to model genotoxicants (CROSBI ID 210440)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Šrut, Maja ; Štambuk, Anamaria ; Bourdineaud, Jean-Paul ; Klobučar, Göran I.V. Zebrafish genome instability after exposure to model genotoxicants // Ecotoxicology, 24 (2015), 4; 887-902. doi: 10.1007/s10646-015-1432-x

Podaci o odgovornosti

Šrut, Maja ; Štambuk, Anamaria ; Bourdineaud, Jean-Paul ; Klobučar, Göran I.V.

engleski

Zebrafish genome instability after exposure to model genotoxicants

Sublethal exposure to environmental genotoxicants may impact genome integrity in affected organisms. It is therefore necessary to develop tools to measure the extent and longevity of genotoxicant-induced DNA damage, and choose appropriate model organisms for biomonitoring. To this end, markers of DNA damage were measured in zebrafish larvae and adults following exposure to model genotoxicants (benzo[a]pyrene and ethyl methanesulfonate). Specifically, we assessed primary DNA damage and the existence of potentially persistent genomic alterations through application of the comet assay, quantitative random amplified polymorphic DNA (qRAPD) and amplified fragment length polymorphism (AFLP) assays. Furthermore, expression of genes involved in DNA repair, oxidative stress response and xenobiotic metabolism was evaluated as well. Additionally, the AFLP method was applied to adult specimens 1 year after larval exposure to the genotoxicants to evaluate the longevity of the observed DNA alterations. Large numbers of DNA alterations were detected in larval DNA using the comet assay, qRAPD and AFLP, demonstrating that zebrafish larvae are a sensitive model for revealing genotoxic effects. Furthermore, some of these genomic alterations persisted into adulthood, indicating the formation of stable genomic modifications. qRAPD and AFLP methods proved to be highly sensitive to genotoxic effects, even in cases when the comet assay indicated a lack of significant damage. These results thus support the use of zebrafish larvae as a sensitive model for monitoring the impact of genotoxic insult and give evidence of the longevity of genomic modifications induced by genotoxic agents.

Danio rerio; comet assay; quantitative RAPD; AFLP; DNA repair genes

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

24 (4)

2015.

887-902

objavljeno

0963-9292

10.1007/s10646-015-1432-x

Povezanost rada

Biologija

Poveznice
Indeksiranost