Napredna pretraga

Pregled bibliografske jedinice broj: 721322

Optimizing ELARS Algorithms Using NVIDIA CUDA Heterogeneous Parallel Programming Platform


Miletić, Vedran; Holenko Dlab, Martina; Hoić- Božić, Nataša;
Optimizing ELARS Algorithms Using NVIDIA CUDA Heterogeneous Parallel Programming Platform // ICT Innovations 2014, Advances in Intelligent Systems and Computing / Bogdanova, Ana Madevska ; Gjorgjevikj, Dejan (ur.).
Berlin, Heidelberg: Springer, 2015. str. 135-144 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


Naslov
Optimizing ELARS Algorithms Using NVIDIA CUDA Heterogeneous Parallel Programming Platform

Autori
Miletić, Vedran ; Holenko Dlab, Martina ; Hoić- Božić, Nataša ;

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
ICT Innovations 2014, Advances in Intelligent Systems and Computing / Bogdanova, Ana Madevska ; Gjorgjevikj, Dejan - Berlin, Heidelberg : Springer, 2015, 135-144

ISBN
978-3-319-09878-4

Skup
ICT Innovations 2014

Mjesto i datum
Ohrid, Makedonija, 9-12.09.2014

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
E-learning; recommender system; ELARS; algorithm optimization; heterogeneous paralell programming; NVIDIA CUDA

Sažetak
Scalability is an important property of every large-scale recommender system. In order to ensure smooth user experience, recommendation algorithms should be optimized to work with large amounts of user data. This paper presents the optimization approach used in the development of the E-learning activities recommender system (ELARS). The recommendations for students and groups in ELARS include four different types of items: Web 2.0 tools, collaborators (colleague students), optional e- learning activities, and advice. Since implemented recommendation algorithms depend on prediction of students’ preferences, algorithm that computes predictions was offloaded to graphics processing unit using NVIDIA CUDA heterogeneous parallel programming platform. This offload increases performance significantly, especially with large number of students using the system.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove
Sveučilište u Rijeci - Odjel za informatiku