Napredna pretraga

Pregled bibliografske jedinice broj: 701512

Personalizing E-Learning 2.0 Using Recommendations


Holenko Dlab, Martina; Hoić-Bozić, Nataša; Mezak, Jasminka
Personalizing E-Learning 2.0 Using Recommendations // Methodologies and Intelligent Systems for Technology Enhanced Learning / Di Mascio, Tania ; Gennari, Rosella ; Vitorini, Pierpaolo ; Vicari, Rosa ; de la Prieta, Fernando (ur.).
Heidelberg New York Dordrecht London: Springer, 2014. str. 27-35 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


Naslov
Personalizing E-Learning 2.0 Using Recommendations

Autori
Holenko Dlab, Martina ; Hoić-Bozić, Nataša ; Mezak, Jasminka

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Methodologies and Intelligent Systems for Technology Enhanced Learning / Di Mascio, Tania ; Gennari, Rosella ; Vitorini, Pierpaolo ; Vicari, Rosa ; de la Prieta, Fernando - Heidelberg New York Dordrecht London : Springer, 2014, 27-35

ISBN
978-3-319-07697-3

Skup
4th Conference on Methodologies and Intelligent Systems for Technology Enhanced Learning (mis4TEL)

Mjesto i datum
Salamanca, Španjolska, 4.-6.6.2014

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Recommender System; Recommendation Techniques; E Learning; Collaborative Learning; TEL; Web 2.0

Sažetak
Recommender systems support users in accessing information available on the Web. This process ensures personalization since recommendations are generated according to user's characteristics. In the educational domain, in the most cases, recommendations refer to learning materials. Besides that, there is a potential for using recommendation techniques in order to personalize other aspects of e-learning context. This paper describes a recommendation model for providing personalization of a collaborative learning process. Well-known recommendation techniques are adapted for online learning environment that consists of an LMS and different Web 2.0 tools. The recommendations are used to support students before and during e-tivities and include four different types of items: optional e-tivities, collaborators, Web 2.0 tools and advice.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove
Sveučilište u Rijeci - Odjel za informatiku