Napredna pretraga

Pregled bibliografske jedinice broj: 697616

Detection of Duplicated Image Regions using Cellular Automata


Tralic, Dijana; Rosin, Paul; Sun, Xianfang; Grgic, Sonja
Detection of Duplicated Image Regions using Cellular Automata // Proceedings IWSSIP 2014 / Mustra, Mario ; Tralic, Dijana ; Grgic, Mislav ; Zovko-Cihlar, Branka (ur.).
Zagreb: Fakultet elektortehnike i računarstva, 2014. str. 167-170 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


Naslov
Detection of Duplicated Image Regions using Cellular Automata

Autori
Tralic, Dijana ; Rosin, Paul ; Sun, Xianfang ; Grgic, Sonja

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings IWSSIP 2014 / Mustra, Mario ; Tralic, Dijana ; Grgic, Mislav ; Zovko-Cihlar, Branka - Zagreb : Fakultet elektortehnike i računarstva, 2014, 167-170

ISBN
978-953-184-191-7

Skup
21st International Conference on Systems, Signals and Image Processing IWSSIP 2014

Mjesto i datum
Dubrovnik, Hrvatska, 12.-15. svibanj

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Image Forensics; Copy-Move Forgery; Cellular Automata; Post-processing

Sažetak
A common image forgery method is copy-move forgery (CMF), where part of an image is copied and moved to a new location. Identification of CMF can be conducted by detection of duplicated regions in the image. This paper presents a new approach for CMF detection where cellular automata (CA) are used. The main idea is to divide an image into overlapping blocks and use CA to learn a set of rules. Those rules appropriately describe the intensity changes in every block and are used as features for detection of duplicated areas in the image. Use of CA for image processing implies use of pixels’ intensities as cell states, leading to a combinatorial explosion in the number of possible rules and subsets of those rules. Therefore, we propose a reduced description based on a proper binary representation using local binary patterns (LBPs). For detection of plain CMF, where no transformation of the copied area is applied, sufficient detection is accomplished by 1D CA. The main issue of the proposed method is its sensitivity to post-processing methods, such as the addition of noise or blurring. Coping with that is possible by pre-processing of the image using an averaging filter.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Ustanove
Fakultet elektrotehnike i računarstva, Zagreb