Napredna pretraga

Pregled bibliografske jedinice broj: 667332

Računalno potpomognuta automatska segmentacija slika pluća dobivenih računalnom tomografijom i primjena na praćenje razvoja bolesti


Mešanović, Nihad
Računalno potpomognuta automatska segmentacija slika pluća dobivenih računalnom tomografijom i primjena na praćenje razvoja bolesti 2013., doktorska disertacija, Fakultet elektrotehnike i računarstva, Zagreb


Naslov
Računalno potpomognuta automatska segmentacija slika pluća dobivenih računalnom tomografijom i primjena na praćenje razvoja bolesti
(Computer Aided Automated Segmentation of Computed Tomography Lung Images and Application to Disease Progression Monitoring)

Autori
Mešanović, Nihad

Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija

Fakultet
Fakultet elektrotehnike i računarstva

Mjesto
Zagreb

Datum
18.06

Godina
2013

Stranica
134

Mentor
Grgić, Mislav

Ključne riječi
Automatska segmentacija; segmentacija traheobronhijalnog stabla; procjena razvoja bolesti
(Automatic segmentation; segmentation of tracheobronchial tree; automatic disease progression estimation)

Sažetak
Segmentacija struktura pluća važna je operacija u analizi medicinskih slika. U ovoj disertaciji predložene su metode za automatsku segmentaciju plućnog tkiva, izdvajanje plućne parenhime i traheobronhijalnog stabla sa slika pluća dobivenih računalnom tomografijom, kao i razvoj metoda za automatsku segmentaciju plućnog tkiva radi praćenja razvoja bolesti pluća. Razvijena je brza i robusna automatizirana metoda za segmentaciju granica prsnog koša i uklanjanje neanatomskih piksela, koja može naći primjenu u drugim računalnim sustavima i analizi medicinskih slika. Formirana je i metoda za automatsku segmentaciju plućnog parenhima i traheobronhijalnog stabla pluća, koja koristi algoritam izrastanja regije te je predstavljen sustav koji sam pronalazi odgovarajuću anatomsku lokaciju za postavljanje sjemenske točke, a uvedena su dodatna ograničenja za sprečavanje nepravilne segmentacije. Ova disertacija dodatno opisuje računalne metode za dvodimenzionalno (2D) i trodimenzionalno (3D) segmentiranje i volumetrijsko mjerenje bolesti pluća. Mjerenje promjene u veličini odreĎene tvorbe izmeĎu dva pregleda od vitalnog je značaja za praćenje razvoja bolesti i utvrĎivanje učinkovitosti liječenja. Trenutačne metode za mjerenje plućnih bolesti ne koriste volumetrijsko usporeĎivanje koje je idealna metoda za praćenje razvoja bolesti. Metoda za automatsko odreĎivanje razvoja bolesti predložena u ovoj disertaciji radi prema načelu mjerenja površine segmentiranih zdravih pluća, ne uzimajući u obzir tvorbe koje se nalaze unutar plućnog parenhima. S obzirom na to da se kod segmentacije pluća velike promjene teško mogu izdvojiti radi sličnih karakteristika s okolnim tkivom, predložena metoda je pokazala da se ova sličnost može iskoristiti u cilju praćenja promjene bolesti. Istraživanjem se pokazalo da se automatski način segmentacije može koristiti u kliničke svrhe, radi olakšanja rada liječnika i ubrzavanje procesa rada i u tu svrhu su rezultati usporeĎeni s ručnom segmentacijom i ocjenama radiologa, a na velikom broju slika pokazana je značajna statistička korelacija s referentnim rezultatima. Ove metode čine temelj sustava za koji se očekuje da će dopustiti i istraživačima i kliničarima da učinkovito segmentiraju i mjere plućna oboljenja te da prate napredovanje bolesti i procijene učinkovitost tretmana.

Izvorni jezik
Hrvatski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekt / tema
036-0361630-1635 - Upravljanje kvalitetom slike u radiodifuziji digitalnog videosignala (Sonja Grgić, )
036-0982560-1643 - Inteligentno određivanje značajki slike u sustavima za otkrivanje znanja (Mislav Grgić, )

Ustanove
Fakultet elektrotehnike i računarstva, Zagreb