Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 641820

Prediction of atomic web services reliability based on k-means clustering


Šilić, Marin; Delač, Goran; Srbljić Siniša
Prediction of atomic web services reliability based on k-means clustering // Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE'13 / Meyer, Bertrand ; Baresi, Luciano ; Mezini, Mira (ur.).
New York, NY, USA: ACM, 2013. str. 70-80 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 641820 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Prediction of atomic web services reliability based on k-means clustering

Autori
Šilić, Marin ; Delač, Goran ; Srbljić Siniša

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE'13 / Meyer, Bertrand ; Baresi, Luciano ; Mezini, Mira - New York, NY, USA : ACM, 2013, 70-80

ISBN
978-1-4503-2237-9

Skup
ESEC/FSE'13 Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering

Mjesto i datum
Sankt Peterburg, Rusija, 18-26.08.2013

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Reliability; Prediction model; Clustering; Web services; Cloud computing

Sažetak
Contemporary web applications are often designed as composite services built by coordinating atomic services with the aim of providing the appropriate functionality. Although functional properties of each atomic service assure correct functionality of the entire application, nonfunctional properties such as availability, reliability, or security might significantly influence the user- perceived quality of the application. In this paper, we present CLUS, a model for reliability prediction of atomic web services that improves state-of-the-art approaches used in modern recommendation systems. CLUS predicts the reliability for the ongoing service invocation using the data collected from previous invocations. We improve the accuracy of the current state-of-the-art prediction models by considering user-, service- and environment- specific parameters of the invocation context. To address the computational performance related to scalability issues, we aggregate the available previous invocation data using K-means clustering algorithm. We evaluated our model by conducting experiments on services deployed in different regions of the Amazon cloud. The evaluation results suggest that our model improves both performance and accuracy of the prediction when compared to the current state-of-the-art models.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
036-0362980-1921 - Računalne okoline za sveprisutne raspodijeljene sustave (Srbljić, Siniša, MZOS ) ( POIROT)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Siniša Srbljić (autor)

Avatar Url Goran Delač (autor)

Avatar Url Marin Šilić (autor)

Citiraj ovu publikaciju:

Šilić, Marin; Delač, Goran; Srbljić Siniša
Prediction of atomic web services reliability based on k-means clustering // Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE'13 / Meyer, Bertrand ; Baresi, Luciano ; Mezini, Mira (ur.).
New York, NY, USA: ACM, 2013. str. 70-80 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Šilić, M., Delač, G. & Srbljić Siniša (2013) Prediction of atomic web services reliability based on k-means clustering. U: Meyer, B., Baresi, L. & Mezini, M. (ur.)Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE'13.
@article{article, year = {2013}, pages = {70-80}, keywords = {Reliability, Prediction model, Clustering, Web services, Cloud computing}, isbn = {978-1-4503-2237-9}, title = {Prediction of atomic web services reliability based on k-means clustering}, keyword = {Reliability, Prediction model, Clustering, Web services, Cloud computing}, publisher = {ACM}, publisherplace = {Sankt Peterburg, Rusija} }
@article{article, year = {2013}, pages = {70-80}, keywords = {Reliability, Prediction model, Clustering, Web services, Cloud computing}, isbn = {978-1-4503-2237-9}, title = {Prediction of atomic web services reliability based on k-means clustering}, keyword = {Reliability, Prediction model, Clustering, Web services, Cloud computing}, publisher = {ACM}, publisherplace = {Sankt Peterburg, Rusija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font