Napredna pretraga

Pregled bibliografske jedinice broj: 640375

An Expectation-Maximization Approach Applied to Underwater Target Detection


Tai Fei; Dieter Kraus; Ivan Aleksi
An Expectation-Maximization Approach Applied to Underwater Target Detection // Proceedings of the International Conference on Detection and Classification of Underwater Targets (DCUT), Brest, 2012. / Isabelle Quidu, Vincent Myers, Benoit Zerr (ur.).
Newcastle, United Kingdom: Cambridge Scholars Publishing, 2014. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


Naslov
An Expectation-Maximization Approach Applied to Underwater Target Detection

Autori
Tai Fei ; Dieter Kraus ; Ivan Aleksi

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the International Conference on Detection and Classification of Underwater Targets (DCUT), Brest, 2012. / Isabelle Quidu, Vincent Myers, Benoit Zerr - Newcastle, United Kingdom : Cambridge Scholars Publishing, 2014

ISBN
978-1-4438-5709-3

Skup
ICoURS’12 – International Conference on Underwater Remote Sensing

Mjesto i datum
Brest, Francuska, 8-11.10.2012

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Image segmentation; Pearson distribution system; Dempster-Shafer evidence theory; expectationmaximization algorithm; synthetic aperture sonar

Sažetak
In this paper, an expectation-maximization (EM) approach assisted by Dempster-Shafer evidence theory (DST) for image segmentation is presented. The likelihood function for EM approach proposed by Sanjay-Gopal et al., which decouples the spatial correlation between pixels far away from each other, is taken into account. The Gaussian mixture model is extended to a generalized mixture model which adopts the Pearson distribution system, so that our approach can approximate the statistics of the sonar imagery with more flexibility. Moreover, an intermediate step (I-step) based on DST is introduced between the E- and M-steps of the EM to consider the spatial dependency among neighboring pixels. Finally, numerical tests are carried out on SAS images. Our approach is quantitatively compared to those methods from the literature with the help of se veral evaluation measures for image egmentation.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekt / tema
165-0361621-2000 - Distribuirano računalno upravljanje u transportu i industrijskim pogonima (Željko Hocenski, )
165-0362980-2002 - Postupci raspoređivanja u samoodrživim raspodijeljenim računalnim sustavima (Goran Martinović, )

Ustanove
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Autor s matičnim brojem:
Ivan Aleksi, (295570)