Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Theoretical study on the mechanism and kinetics of addition of hydroxyl radicals to fluorobenzene (CROSBI ID 187239)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Kovačević, Goran ; Sabljić, Aleksandar Theoretical study on the mechanism and kinetics of addition of hydroxyl radicals to fluorobenzene // Journal of computational chemistry, 34 (2013), 8; 646-655. doi: 10.1002/jcc.23175

Podaci o odgovornosti

Kovačević, Goran ; Sabljić, Aleksandar

engleski

Theoretical study on the mechanism and kinetics of addition of hydroxyl radicals to fluorobenzene

Geometries, frequencies, reaction barriers, and reaction rates were calculated for the addition of OH radical to fluorobenzene using MP2 and G3 methods. Four stationary points were found along each reaction path: reactants, prereaction complex, transition state and product. A potential for association of OH radical and fluorobenzene into prereaction complex was calculated and the associated transition state was determined for the first time. G3 calculations give higher reaction barriers than MP2, but also a significantly deeper prereaction complex minimum. The rate constants, calculated with RRKM theory using G3 energies are much faster and in much better agreement with the experiment than those calculated with MP2 method since the deeper well favors the formation of prereaction complex and also increases the final relative populations of adducts. The discrepancies between the experimental and calculated rate constants are attributed to the errors in calculated frequencies as well as to the overestimated G3 reaction barriers and underestimated prereaction complex well depth. It was possible to rectify those errors and to reproduce the experimental reaction rates in the temperature range 230–310 K by treating the relative translation of OH radical and fluorobenzene as a two-dimensional particle-in-the-box approximation and by downshifting the prereaction complex well and reaction barriers by 0.7 kcal mol-1. The isomeric distribution of fluoro-hydroxycyclohexadienyl radicals is calculated from the reaction rates to be 30.9% ortho, 22.6% meta, 38.4% para and 8.3% ipso. These results are in agreement with experiment which also shows dominance of ortho and para channels.

MP2 and G3 methods; tropospheric degradation; halogenated benzenes; RRKM theory; particle-in-the-box approximation

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

34 (8)

2013.

646-655

objavljeno

0192-8651

10.1002/jcc.23175

Povezanost rada

Kemija

Poveznice
Indeksiranost