Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 590823

Prediction Method in Improvement of Multi-Hybrid Systems Management


Osman, Krešimir
Prediction Method in Improvement of Multi-Hybrid Systems Management // 2nd TUM Spring School on Systems Engineering - Handout
Munchen, 2011. str. 53-65 (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)


CROSBI ID: 590823 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Prediction Method in Improvement of Multi-Hybrid Systems Management

Autori
Osman, Krešimir

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni

Izvornik
2nd TUM Spring School on Systems Engineering - Handout / - Munchen, 2011, 53-65

Skup
2nd TUM Spring School on Systems Engineering

Mjesto i datum
Munchen, Njemačka, 03-06.04. 2011

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
multi-hybrid systems; MDM approach; System Dynamical Behaviour Model approach; system dynamics; model predictive control; generalized hybrid state model; Liapunov method; hybrid automata

Sažetak
The goal of this research is to investigate how few methods can be combined in order to improve management of multi – hybrid systems. Complex analysis of these systems is based on a combination of two approaches: multiple domain matrices (MDM) approach and System Dynamical Behaviour Model approach, which combines few methods and models in order to describe and adjust dynamical behaviour of system, their subsystems and components. These methods and models are: system dynamics, model predictive control, generalized hybrid state model, Liapunov method and Hybrid automata. Prediction method, which is proposed here, model predictive control (MPC) method, is recognized in literature examples, as a very suitable for both, continuous-time and discrete-time prediction, which can be solved in the same framework, multi – dynamic mapping approach, that combined structural and hybrid dynamical system models. With this approach we can better comprehend and manage complexity in multi – hybrid systems. Prediction framework is based to solve engineering problems.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Projekti:
120-1201829-1828 - Modeli i metode upravljanja znanjem u razvoju proizvoda (Marjanović, Dorian, MZOS ) ( POIROT)

Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Krešimir Osman (autor)


Citiraj ovu publikaciju:

Osman, Krešimir
Prediction Method in Improvement of Multi-Hybrid Systems Management // 2nd TUM Spring School on Systems Engineering - Handout
Munchen, 2011. str. 53-65 (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)
Osman, K. (2011) Prediction Method in Improvement of Multi-Hybrid Systems Management. U: 2nd TUM Spring School on Systems Engineering - Handout.
@article{article, author = {Osman, K.}, year = {2011}, pages = {53-65}, keywords = {multi-hybrid systems, MDM approach, System Dynamical Behaviour Model approach, system dynamics, model predictive control, generalized hybrid state model, Liapunov method, hybrid automata}, title = {Prediction Method in Improvement of Multi-Hybrid Systems Management}, keyword = {multi-hybrid systems, MDM approach, System Dynamical Behaviour Model approach, system dynamics, model predictive control, generalized hybrid state model, Liapunov method, hybrid automata}, publisherplace = {Munchen, Njema\v{c}ka} }
@article{article, author = {Osman, K.}, year = {2011}, pages = {53-65}, keywords = {multi-hybrid systems, MDM approach, System Dynamical Behaviour Model approach, system dynamics, model predictive control, generalized hybrid state model, Liapunov method, hybrid automata}, title = {Prediction Method in Improvement of Multi-Hybrid Systems Management}, keyword = {multi-hybrid systems, MDM approach, System Dynamical Behaviour Model approach, system dynamics, model predictive control, generalized hybrid state model, Liapunov method, hybrid automata}, publisherplace = {Munchen, Njema\v{c}ka} }




Contrast
Increase Font
Decrease Font
Dyslexic Font