Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury (CROSBI ID 185696)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Lalancette-Hébert, Melanie ; Swarup, Vivek ; Beaulieu, Jean Martin ; Bohaček, Ivan ; Abdelhamid, Essam ; Weng, Yuan Chen ; Sato, Sachiko, Križ, Jasna Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury // The Journal of neuroscience, 32 (2012), 30; 10383-10395. doi: 10.1523/JNEUROSCI.1498-12.2012

Podaci o odgovornosti

Lalancette-Hébert, Melanie ; Swarup, Vivek ; Beaulieu, Jean Martin ; Bohaček, Ivan ; Abdelhamid, Essam ; Weng, Yuan Chen ; Sato, Sachiko, Križ, Jasna

engleski

Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury

Growing evidence suggests that galectin-3 is involved in fine tuning of the inflammatory responses at the periphery, however, its role in injured brain is far less clear. Our previous work demonstrated upregulation and coexpression of galectin-3 and IGF-1 in a subset of activated/proliferating microglial cells after stroke. Here, we tested the hypothesis that galectin-3 plays a pivotal role in mediating injury-induced microglial activation and proliferation. By using a galectin-3 knock-out mouse (Gal-3KO), we demonstrated that targeted disruption of the galectin-3 gene significantly alters microglia activation and induces ∼4-fold decrease in microglia proliferation. Defective microglia activation/proliferation was further associated with significant increase in the size of ischemic lesion, ∼2-fold increase in the number of apoptotic neurons, and a marked deregulation of the IGF-1 levels. Next, our results revealed that contrary to WT cells, the Gal3-KO microglia failed to proliferate in response to IGF-1. Moreover, the IGF-1-mediated mitogenic microglia response was reduced by N-glycosylation inhibitor tunicamycine while coimmunoprecipitation experiments revealed galectin-3 binding to IGF-receptor 1 (R1), thus suggesting that interaction of galectin-3 with the N-linked glycans of receptors for growth factors is involved in IGF-R1 signaling. While the canonical IGF-1 signaling pathways were not affected, we observed an overexpression of IL-6 and SOCS3, suggesting an overactivation of JAK/STAT3, a shared signaling pathway for IGF-1/IL-6. Together, our findings suggest that galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury.

galectin-3; microglia; proliferation; stroke; Igf-1

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

32 (30)

2012.

10383-10395

objavljeno

0270-6474

10.1523/JNEUROSCI.1498-12.2012

Povezanost rada

Temeljne medicinske znanosti

Poveznice
Indeksiranost