Napredna pretraga

Pregled bibliografske jedinice broj: 588770

A model for a solvent-free synthetic organic research laboratory: click-mechanosynthesis and structural characterization of thioureas without bulk solvents


Štrukil, Vjekoslav; Igrc, Marina Diana; Fábián, László; Eckert-Maksić, Mirjana; Childs, Scott L.; Reid, David G.; Duer, Melinda J.; Halasz, Ivan; Mottilloe, Cristina; Friščić, Tomislav
A model for a solvent-free synthetic organic research laboratory: click-mechanosynthesis and structural characterization of thioureas without bulk solvents // Green chemistry, 14 (2012), 9; 2462-2473 doi:10.1039/C2GC35799B (međunarodna recenzija, članak, znanstveni)


Naslov
A model for a solvent-free synthetic organic research laboratory: click-mechanosynthesis and structural characterization of thioureas without bulk solvents

Autori
Štrukil, Vjekoslav ; Igrc, Marina Diana ; Fábián, László ; Eckert-Maksić, Mirjana ; Childs, Scott L. ; Reid, David G. ; Duer, Melinda J. ; Halasz, Ivan ; Mottilloe, Cristina ; Friščić, Tomislav

Izvornik
Green chemistry (1463-9262) 14 (2012), 9; 2462-2473

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Solvent-free synthesis; thioureas; mechanochemistry

Sažetak
The mechanochemical click coupling of isothiocyanates and amines has been used as a model reaction to demonstrate that the concept of a solvent-free research laboratory, which eliminates the use of bulk solvents for either chemical synthesis or structural characterization, is applicable to the synthesis of small organic molecules. Whereas the click coupling is achieved in high yields by simple manual grinding of reactants, the use of an electrical, digitally controllable laboratory mill provides a rapid, quantitative and general route to symmetrical and non-symmetrical aromatic or aromatic–aliphatic thioureas. The enhanced efficiency of electrical ball milling techniques, neat grinding or liquid-assisted grinding, over manual mortar-and-pestle synthesis is demonstrated in the synthesis of 49 different thiourea derivatives. Comparison of powder X-ray diffraction data of mechanochemical products with structural information found in the Cambridge Structural Database (CSD), or obtained herein through single crystal X-ray diffraction, indicates that the mechanochemically obtained thiourea derivatives are pure in a chemical sense, but can also demonstrate purity in a supramolecular sense, i.e. in all structurally explored cases the product consisted of a single polymorph. As an extension of our previous work on solvent-free synthesis of coordination polymers, it is now demonstrated that such polymorphic and chemical purity of selected thiourea derivatives, the latter being evidenced through quantitative reaction yields, can enable the direct solvent-free structural characterization of mechanochemical products through powder X-ray diffraction aided by solid-state NMR spectroscopy.

Izvorni jezik
Engleski

Znanstvena područja
Kemija



POVEZANOST RADA


Projekt / tema
098-0982933-2920 - Organski i bioorganski procesi u osnovnom i elektronski pobuđenim stanjima (Mirjana Maksić, )

Ustanove
Institut "Ruđer Bošković", Zagreb

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati