Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi

Modelnig Fracture of Fibre Reinforced Polymer (CROSBI ID 583834)

Prilog sa skupa u zborniku | izvorni znanstveni rad | međunarodna recenzija

Ožbolt, Joško ; Lacković, Vesna ; Krolo, Joško Modelnig Fracture of Fibre Reinforced Polymer // Advances in Fracture and Damage Mechanics X / Tonković, Zdenko ; Aliabadi, Feri M.H. (ur.). Dürnten: Trans Tech Publications, 2011. str. 150-153

Podaci o odgovornosti

Ožbolt, Joško ; Lacković, Vesna ; Krolo, Joško

engleski

Modelnig Fracture of Fibre Reinforced Polymer

In the present paper 3D rate sensitive constitutive model for modeling of laminate composites is presented. The model is formulated within the framework of continuum mechanics based on the principles of irreversible thermodynamics. The matrix (polymer) is modeled using 3D rate sensitive microplane model. For modeling of fibers (glass) a uni-axial constitutive law is employed. The fibers are assumed to be uniformly smeared-out over the matrix. The formulation is based on the assumption of strain compatibility between matrix and fibers. To account for the de-lamination of fibers, the matrix is represented by the periodically distributed bands with non-uniform strength properties over the band width. The input parameters of the model are defined by the mechanical properties of matrix and fibers (elastic properties, strength and fracture energy), the volume content of fibers and by their orientation in 3D space. The model is implemented into a 3D finite element code. To assure mesh objective results, the localization limiter is based on the assumption of constant energy dissipation within each finite element, i.e. the crack band method is used. The performance of the model is shown on one numerical example for specimens loaded in uni-axial tension. It is demonstrated that the proposed model is able to realistically predict the resistance and failure mode of complex fiber-reinforced composite for different orientation of fibers.

Fiber-reinforced composite; polymer; glass fibers; numerical modeling; finite elements; fracture; microplane model.

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o prilogu

150-153.

2011.

objavljeno

Podaci o matičnoj publikaciji

Advances in Fracture and Damage Mechanics X

Tonković, Zdenko ; Aliabadi, Feri M.H.

Dürnten: Trans Tech Publications

978-3-03785-218-7

Podaci o skupu

10th International Conference on Fracture and Damage Mechanics

predavanje

19.09.2011-21.09.2011

Dubrovnik, Hrvatska

Povezanost rada

Građevinarstvo