Napredna pretraga

Pregled bibliografske jedinice broj: 565118

1-D compressible viscous micropolar fluid model with non-homogeneous boundary conditions for temperature : a local existence theorem


Mujaković, Nermina
1-D compressible viscous micropolar fluid model with non-homogeneous boundary conditions for temperature : a local existence theorem // Nonlinear analysis, 13 (2012), 4; 1844-1853 doi:10.1016/j.nonrwa.2011.12.012 (međunarodna recenzija, članak, znanstveni)


Naslov
1-D compressible viscous micropolar fluid model with non-homogeneous boundary conditions for temperature : a local existence theorem

Autori
Mujaković, Nermina

Izvornik
Nonlinear analysis (1468-1218) 13 (2012), 4; 1844-1853

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Micropolar fluid; generalized solution; weak and strong convergences

Sažetak
We consider non-stationary 1-D flow of a compressible viscous and heat-conducting micropolar fluid, assuming that it is in thermodynamical sense perfect and polytropic. The homogeneous boundary conditions for velocity and microrotation, as well as non-homogeneous boundary conditions for temperature are assumed. Using the Faedo-Galerkin method we prove a local-in-time existence of generalized solution.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
037-0693014-2765 - Matematička analiza kompozitnih i tankih struktura (Zvonimir Tutek, )

Ustanove
Sveučilište u Rijeci - Odjel za matematiku

Autor s matičnim brojem:
Nermina Mujaković, (206962)

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati