Napredna pretraga

## Elasto-plastic analysis of structural problems using atomic basis functions

Kozulić, Vedrana; Gotovac, Blaž
Elasto-plastic analysis of structural problems using atomic basis functions // ICCES Special Symposium on Meshless & Other Novel Computational Methods and Inverse Problems in Science & Engineering
Zonguldak, Turska, 2011. (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)

Naslov
Elasto-plastic analysis of structural problems using atomic basis functions

Autori
Kozulić, Vedrana ; Gotovac, Blaž

Sažeci sa skupova, pp prezentacija, znanstveni

Skup
ICCES Special Symposium on Meshless & Other Novel Computational Methods and Inverse Problems in Science & Engineering

Mjesto i datum
Zonguldak, Turska, 6-10.09.2011.

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Torsion problem of prismatic bars; plastic failure; atomic basis functions; collocation method

Sažetak
The functions implemented in this work are Fup basis functions. They belong to the class of finite, infinitely differentiable functions with compact support named atomic functions. Because of the property of universality, it is possible to hierarchically increase the number of basis functions during non-linear calculation (multilevel approach) in places where plastic yielding occurs. The collocation method is used to form a system of equations in which the differential equation of the problem is satisfied in collocation points of closed domain, while boundary conditions are satisfied exactly at the domain boundary. The propagation of plastic zones is monitored by applying the incremental-iterative procedure until failure. Numerical model developed in this work by using the Fup Collocation Method (FCM) is illustrated on examples of elasto-plastic behavior of a prismatic bar subjected to torsion. It enables an analysis of bars with cross-sections of different shapes including a single and multiplex boundary. The results obtained by the FCM are compared with the existing exact solutions. It can be concluded that the presented numerical model efficiently simulates the real non-linear behavior of the structure and provides excellent results for the elaborated problems. The numerical procedure is stable until plastic failure occurs.

Izvorni jezik
Engleski

Znanstvena područja
Građevinarstvo, Temeljne tehničke znanosti