Napredna pretraga

Pregled bibliografske jedinice broj: 515969

Data Assimilation Techniques used in the SOTERIA EC-FP7 Network


Lapenta, Giovanni, Bettarini, Lapo; Skender, Marina; Innocenti, Maria Elena; Crespon, Francois; Skandrani, Chafik
Data Assimilation Techniques used in the SOTERIA EC-FP7 Network // AGU Fall Meeting Abstracts
San Francisco, SAD, 2009. (poster, sažetak, znanstveni)


Naslov
Data Assimilation Techniques used in the SOTERIA EC-FP7 Network

Autori
Lapenta, Giovanni, Bettarini, Lapo ; Skender, Marina ; Innocenti, Maria Elena ; Crespon, Francois ; Skandrani, Chafik

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
AGU Fall Meeting Abstracts / - , 2009

Skup
American Geophysical Union, Fall Meeting 2009

Mjesto i datum
San Francisco, SAD, 14.-18. XII. 2009.

Vrsta sudjelovanja
Poster

Vrsta recenzije
Neobjavljeni rad

Ključne riječi
Space Weather / Models

Sažetak
Currently the state of the art in the operational prediction of the background solar wind speed and the interplanetary magnetic field (IMF) polarity at earth via the so called WSA model (http://www.swpc.noaa.gov/ws/) is based on using an expertly and careful processing of the input data given by solar observations, e.g. the GONG magnetogram synoptic map <http://gong.nso.edu/data/magmap/>s. We investigate here the use of statistical techniques for data assimilation currently widely in use in oceanographic and atmospheric modeling. We base our approach on previous work (Barrero Mendoza, Oscar , Data assimilation in magnetohydrodynamics systems using Kalman filtering , KU Leuven thesis, 2005 ; Rigler, E. ; Arge, C. ; Mayer, L., Optimizing Coronal and Solar Wind Model Inputs with Data Assimilation, AGU Fall Meeting 2008) that has already proven the capability. The approach uses multiple runs of the modeling approach on statistically guided modifications of the input (such as the GONG magnetograms). Past observed outputs (such as solar wind speed and IMF obtained from the ACE satellite) can be used to better predict future values. Different statistical approaches will be compared.

Izvorni jezik
Engleski

Znanstvena područja
Fizika



POVEZANOST RADA


Autor s matičnim brojem:
Marina Skender, (236684)