Napredna pretraga

Pregled bibliografske jedinice broj: 513934

Identification of biotransformation products of macrolide and fluoroquinolone antimicrobials in membrane bioreactor treatment by ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry


Terzić, Senka; Senta, Ivan; Matošić, Marin; Ahel, Marijan
Identification of biotransformation products of macrolide and fluoroquinolone antimicrobials in membrane bioreactor treatment by ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry // Analytical and bioanalytical chemistry, 401 (2011), 1; 353-363 doi:10.1007/s00216-011-5060-x (međunarodna recenzija, članak, znanstveni)


Naslov
Identification of biotransformation products of macrolide and fluoroquinolone antimicrobials in membrane bioreactor treatment by ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry

Autori
Terzić, Senka ; Senta, Ivan ; Matošić, Marin ; Ahel, Marijan

Izvornik
Analytical and bioanalytical chemistry (1618-2642) 401 (2011), 1; 353-363

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Antimicrobials; fluoroquinolone; macrolide; transformation products; membrane bioreactor; liquid chromatography-mass spectrometry

Sažetak
Ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was applied for the identification of transformation products (TPs) of fluoroquinolone (norfloxacin and ciprofloxacin) and macrolide (azithromycin, erythromycin, and roxitromycin) antimicrobials in wastewater effluents from a Zenon hollow-fiber membrane bioreactor (MBR). The detected TPs were thoroughly characterized using the accurate mass feature for the determination of the tentative molecular formulae and MS-MS experiments for the structural elucidation of unknowns. Several novel TPs, which have not been previously reported in the literature, were identified. The TPs of azithromycin and roxithromycin, identified in MBR effluent, were conjugate compounds, which were formed by phosphorylation of desosamine moiety. Transformation of fluoroquinolones yielded two types of products: conjugates, formed by succinylation of the piperazine ring, and smaller metabolites, formed by an oxidative break-up of piperazine moiety to form the 7-[(2-carboxymethyl)amino] group. A semi-quantitative assessment of these TPs suggested that they might have contributed significantly to the overall balance of antimicrobial residues in MBR effluents and thus to the overall removal efficiency. Determination of TPs during a period of 2 months indicated a conspicuous dynamics, which warrants further research to identify microorganisms involved and treatment conditions leading to their formation.

Izvorni jezik
Engleski

Znanstvena područja
Geologija, Biotehnologija



POVEZANOST RADA


Projekt / tema
098-0982934-2712 - Organski spojevi kao molekulski obilježivači antropogenog utjecaja na okoliš (Marijan Ahel, )

Ustanove
Prehrambeno-biotehnološki fakultet, Zagreb,
Institut "Ruđer Bošković", Zagreb

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati