Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 476170

Heat Transfer Control During Quenching


Liščić, Božidar
Heat Transfer Control During Quenching // Materials and manufacturing processes, 24 (2009), 7-9; 879-886 doi:10.1080/10426910902917694 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 476170 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Heat Transfer Control During Quenching

Autori
Liščić, Božidar

Izvornik
Materials and manufacturing processes (1042-6914) 24 (2009), 7-9; 879-886

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Automatic control of the heat extraction; Controllable heat extraction; Damping effect; Heat extraction dynamic; Heat flux density; High pressure gas quenching (HPGQ); Heat transfer coefficient; Laboratory test for quenching oils: Liscic/Nanmac quench probe; Quenching; Quenching intensity; Spraying liquid nitrogen; Temperature gradient method; Thermocouple response time; Time lag.

Sažetak
The aim of this article is to discuss the measures to control the dynamic of heat extraction by changing some parameters during quenching. This is possible for workpieces of not too small a cross-section size, because transformation of the microstructure proceeds gradually from the surface to the core only when a particular point attains the temperature A1. Differences between calculation of the temperature dependent heat transfer coefficient (HTC) for laboratory specimens and for real workpieces, taking into account the damping effect, the time lag and the thermocouple response time, have been discussed. High Pressure Gas Quenching (HPGQ) in vacuum furnaces is especially prone to changing some parameters during quenching. To increase its quenching intensity, in order to attain high enough hardness in the core, the gas pressure and/or its flow velocity can be increased. When this measure is combined with the transient spraying of liquid nitrogen, a new Controllable Heat Extraction (CHE) can be developed. Moreover, if the furnace is provided with a necessary control system and software program, fully automatic control of the heat extraction during quenching, which guarantees repeatable hardness results, is possible.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Projekti:
120-1201780-1779 - Modeliranje svojstava materijala i parametara procesa (Filetin, Tomislav, MZOS ) ( POIROT)

Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Božidar Liščić (autor)

Poveznice na cjeloviti tekst rada:

doi dx.doi.org

Citiraj ovu publikaciju:

Liščić, Božidar
Heat Transfer Control During Quenching // Materials and manufacturing processes, 24 (2009), 7-9; 879-886 doi:10.1080/10426910902917694 (međunarodna recenzija, članak, znanstveni)
Liščić, B. (2009) Heat Transfer Control During Quenching. Materials and manufacturing processes, 24 (7-9), 879-886 doi:10.1080/10426910902917694.
@article{article, author = {Li\v{s}\v{c}i\'{c}, B.}, year = {2009}, pages = {879-886}, DOI = {10.1080/10426910902917694}, keywords = {Automatic control of the heat extraction, Controllable heat extraction, Damping effect, Heat extraction dynamic, Heat flux density, High pressure gas quenching (HPGQ), Heat transfer coefficient, Laboratory test for quenching oils: Liscic/Nanmac quench probe, Quenching, Quenching intensity, Spraying liquid nitrogen, Temperature gradient method, Thermocouple response time, Time lag.}, journal = {Materials and manufacturing processes}, doi = {10.1080/10426910902917694}, volume = {24}, number = {7-9}, issn = {1042-6914}, title = {Heat Transfer Control During Quenching}, keyword = {Automatic control of the heat extraction, Controllable heat extraction, Damping effect, Heat extraction dynamic, Heat flux density, High pressure gas quenching (HPGQ), Heat transfer coefficient, Laboratory test for quenching oils: Liscic/Nanmac quench probe, Quenching, Quenching intensity, Spraying liquid nitrogen, Temperature gradient method, Thermocouple response time, Time lag.} }
@article{article, author = {Li\v{s}\v{c}i\'{c}, B.}, year = {2009}, pages = {879-886}, DOI = {10.1080/10426910902917694}, keywords = {Automatic control of the heat extraction, Controllable heat extraction, Damping effect, Heat extraction dynamic, Heat flux density, High pressure gas quenching (HPGQ), Heat transfer coefficient, Laboratory test for quenching oils: Liscic/Nanmac quench probe, Quenching, Quenching intensity, Spraying liquid nitrogen, Temperature gradient method, Thermocouple response time, Time lag.}, journal = {Materials and manufacturing processes}, doi = {10.1080/10426910902917694}, volume = {24}, number = {7-9}, issn = {1042-6914}, title = {Heat Transfer Control During Quenching}, keyword = {Automatic control of the heat extraction, Controllable heat extraction, Damping effect, Heat extraction dynamic, Heat flux density, High pressure gas quenching (HPGQ), Heat transfer coefficient, Laboratory test for quenching oils: Liscic/Nanmac quench probe, Quenching, Quenching intensity, Spraying liquid nitrogen, Temperature gradient method, Thermocouple response time, Time lag.} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • CA Search (Chemical Abstracts)
  • INSPEC
  • ISMEC: Mechanical Engineering Abstracts
  • METADEX: Metals Science
  • RAPRA: Rubber and Plastics
  • World Ceramic Abstracts
  • INIST-Pascal, Materials Science Citation Index, SCIE, Ceramics Abstracts, Corrosion Abstracts, Civil Engineering Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font