Napredna pretraga

Pregled bibliografske jedinice broj: 468688

Taxonomic and functional diversity of atrazine-degrading bacterial communities enriched from agrochemical factory soil


Udiković-Kolić, Nikolina; Hršak, Dubravka; Devers, Marion; Klepac-Ceraj, Vanja; Petrić, Ines; Martin-Laurent, Fabrice
Taxonomic and functional diversity of atrazine-degrading bacterial communities enriched from agrochemical factory soil // Journal of applied microbiology, 109 (2010), 1; 355-367 doi:10.1111/j.1365-2672.2010.04700.x (međunarodna recenzija, članak, znanstveni)


Naslov
Taxonomic and functional diversity of atrazine-degrading bacterial communities enriched from agrochemical factory soil

Autori
Udiković-Kolić, Nikolina ; Hršak, Dubravka ; Devers, Marion ; Klepac-Ceraj, Vanja ; Petrić, Ines ; Martin-Laurent, Fabrice

Izvornik
Journal of applied microbiology (1364-5072) 109 (2010), 1; 355-367

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Atrazine ; Biodegradation ; Bacterial community ; Diversity ; atz genes ; trz genes
(Atrazine ; biodegradation ; bacterial community ; diversity ; atz genes ; trz genes)

Sažetak
Aims: To characterize atrazine-degrading potential of bacterial communities enriched from agrochemical factory soil by analyzing diversity and organization of catabolic genes. Methods and Results: The bacterial communities enriched from three different sites of varying atrazine contamination mineralized 65-80% of 14C ring-labeled atrazine. The presence of trzN-atzBC-trzD, trzN-atzABC-trzD and trzN-atzABCDEF-trzD gene combinations was determined by PCR. In all enriched communities, trzN-atzBC genes were located on a 165-kb plasmid, while atzBC or atzC genes were located on separate plasmids. Quantitative PCR revealed that catabolic genes were present in up to 4% of the community. Restriction analysis of 16S rDNA clone libraries of the three enrichments revealed marked differences in microbial community structure and diversity. Sequencing of selected clones identified members belonging to Proteobacteria (α-, β- and γ-subclasses), the Actinobacteria, Bacteroidetes and TM7 division. Several 16S rRNA gene sequences were closely related to atrazine-degrading community members previously isolated from the same contaminated site. Conclusions: The enriched communities represent a complex and diverse bacterial associations displaying heterogeneity of catabolic genes and their functional redundancies at the first steps of the upper and lower atrazine-catabolic pathway. The presence of catabolic genes in small proportion suggests that only a subset of the community has the capacity to catabolize atrazine. Significance and Impact of the Study: This study provides insights into the genetic specificity and the repertoire of catabolic genes within bacterial communities originating from soils exposed to long-term contamination by s-triazine compounds.

Izvorni jezik
Engleski

Znanstvena područja
Biotehnologija



POVEZANOST RADA


Projekt / tema
098-0982934-2712 - Organski spojevi kao molekulski obilježivači antropogenog utjecaja na okoliš (Marijan Ahel, )

Ustanove
Institut "Ruđer Bošković", Zagreb

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati