Napredna pretraga

Pregled bibliografske jedinice broj: 460758

Conductance of a phenylene-vinylene molecular wire: Contact gap and tilt angle dependence


Bilić, Ante; Crljen, Željko; Gumhalter, Branko; Gale, J.D.; Rungger, I.; Sanvito, S.
Conductance of a phenylene-vinylene molecular wire: Contact gap and tilt angle dependence // Physical Review B - Condensed Matter and Materials Physics, 81 (2010), 155101-1 doi:10.1103/PhysRevB.81.155101 (međunarodna recenzija, članak, znanstveni)


Naslov
Conductance of a phenylene-vinylene molecular wire: Contact gap and tilt angle dependence

Autori
Bilić, Ante ; Crljen, Željko ; Gumhalter, Branko ; Gale, J.D. ; Rungger, I. ; Sanvito, S.

Izvornik
Physical Review B - Condensed Matter and Materials Physics (1098-0121) 81 (2010); 155101-1

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Molecular wire ; electronic conductance

Sažetak
Charge transport through a molecular junction comprising an oligomer of p-phenylene-vinylene between gold contacts has been investigated using density-functional theory and the nonequilibrium Green’s function method. The influence of the contact gap geometry on the transport has been studied for elongated and contracted gaps, as well as various molecular conformations. The calculated current-voltage characteristics show an unusual increase in the low bias conductance with the contact separation. In contrast, for compressed junctions the conductance displays only a very weak dependence on both the separation and related molecular conformation. However, if the contraction of the gap between the electrodes is accommodated by tilting the molecule, the conductance will increase with the tilting angle, in line with experimental observations. It is demonstrated that the effect of tilting on transport can be interpreted in a similar way to the case of the stretching the junction with a molecule in an upright position. The lowest conductance was observed for the equilibrium gap geometry. With the dominant transport contribution arising from the π system of the frontier junction orbitals, all the predicted increases in the conductance arise simply from the better band alignment between relevant frontier orbitals at the nonequilibrium geometries at the expense of weaker coupling with the contacts.

Izvorni jezik
Engleski

Znanstvena područja
Fizika



POVEZANOST RADA


Projekt / tema
035-0352828-2839 - Kvantna stanja, ultrabrza dinamika i dekoherencija u nanostrukturnim sistemima (Branko Gumhalter, )
098-0352828-3118 - Elektronska svojstva hibridnih nanostruktura (Željko Crljen, )

Ustanove
Institut za fiziku, Zagreb,
Institut "Ruđer Bošković", Zagreb

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati