Napredna pretraga

Pregled bibliografske jedinice broj: 459631

Relaxation Theorem and Lower-Dimensional Models in Micropolar Elasticity


Velčić, Igor; Tambača, Josip
Relaxation Theorem and Lower-Dimensional Models in Micropolar Elasticity // Mathematics and mechanics of solids, 15 (2010), 8; 812-853 doi:10.1177/1081286509342270 (međunarodna recenzija, članak, znanstveni)


Naslov
Relaxation Theorem and Lower-Dimensional Models in Micropolar Elasticity

Autori
Velčić, Igor ; Tambača, Josip

Izvornik
Mathematics and mechanics of solids (1081-2865) 15 (2010), 8; 812-853

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Nonlinear micropolar elasticity; relaxation theorem; rod model; plate model; Cosserat rod model

Sažetak
In this paper we prove the relaxation theorem in micropolar elasticity and use it, together with the semicontinuity theorem, to justify lower-dimensional models of rods (and plates) by means of -convergence starting from general energy functionals. The internal energy density is assumed to be continuous and satisf–ies some growth and coercivity conditions. In particular, we apply these results to derive a rod model starting from quadratic isotropic energy density function of a cylindrical three-dimensional micropolar body.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
037-0693014-2765 - Matematička analiza kompozitnih i tankih struktura (Zvonimir Tutek, )

Ustanove
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka:


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati