Napredna pretraga

Pregled bibliografske jedinice broj: 445180

On refining of inequalities for convex functions by the concept of superquadracity


Banić, Senka
On refining of inequalities for convex functions by the concept of superquadracity // International Congress on Mathematics MICOM 2009, Book of Abstracts / Dodunekov, Stefan ; Eraković, Vesna (ur.).
Skopje: Union of Mathematicans of Macedonia, 2009. str. 14-14 (predavanje, međunarodna recenzija, sažetak, znanstveni)


Naslov
On refining of inequalities for convex functions by the concept of superquadracity

Autori
Banić, Senka

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
International Congress on Mathematics MICOM 2009, Book of Abstracts / Dodunekov, Stefan ; Eraković, Vesna - Skopje : Union of Mathematicans of Macedonia, 2009, 14-14

Skup
MASSEE International Congress on Mathematics MICOM 2009

Mjesto i datum
Ohrid, Makedonija, 16-20.09.2009

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Convex functions; superquadratic functions; Jensen's inequality; Hölder's inequality; Slater's inequality; Hermite-Hadamard inequalities

Sažetak
In 2004 S. Abramovich, G. Jameson and G. Sinnamon introduced a new interesting class of functions: the class of superquadratic functions. We say that the function ϕ is superquadratic if for any x≥0 there exists C(x)∈R such that ϕ(y)≥ϕ(x)+C(x)(y-x)+ϕ(|y-x|), ∀y≥0. In 2007 S. Abramovich, S. Banić and M. Matić generalized this concept for the functions in several variables. The class of superquadratic functions is strongly related to the class of convex functions: it can be proved that any nonnegative superquadratic function is convex. Using some previously proved characterizations and properties of this new class we establish "superquadratic variants" of several well known inequalities for convex functions. The refinements of many important inequalities for convex functions easily follow as special cases when considered superquadratic functions are nonnegative.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
177-1170889-1287 - Konveksne funkcije i primjene (Marko Matić, )

Ustanove
Fakultet građevinarstva, arhitekture i geodezije, Split,
Prirodoslovno-matematički fakultet, Split

Autor s matičnim brojem:
Senka Banić, (220726)